【题目】如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
【答案】
(1)
解:∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),
∴ ,
解得 ,
故抛物线的函数解析式为y=x2﹣2x﹣3;
(2)
解:令x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
则点C的坐标为(3,0),
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴点E坐标为(1,﹣4),
设点D的坐标为(0,m),作EF⊥y轴于点F,
∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,
∵DC=DE,
∴m2+9=m2+8m+16+1,
解得m=﹣1,
∴点D的坐标为(0,﹣1);
(3)
解:
∵点C(3,0),D(0,﹣1),E(1,﹣4),
∴CO=DF=3,DO=EF=1,
根据勾股定理,CD= = = ,
在△COD和△DFE中,
∵ ,
∴△COD≌△DFE(SAS),
∴∠EDF=∠DCO,
又∵∠DCO+∠CDO=90°,
∴∠EDF+∠CDO=90°,
∴∠CDE=180°﹣90°=90°,
∴CD⊥DE,
①分OC与CD是对应边时,
∵△DOC∽△PDC,
∴ ,
即 = ,
解得DP= ,
过点P作PG⊥y轴于点G,
则 ,
即 ,
解得DG=1,PG= ,
当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,
所以点P(﹣ ,0),
当点P在点D的右边时,OG=DO+DG=1+1=2,
所以,点P( ,﹣2);
②OC与DP是对应边时,
∵△DOC∽△CDP,
∴ = ,
即 = ,
解得DP=3 ,
过点P作PG⊥y轴于点G,
则 ,
即
解得DG=9,PG=3,
当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,
所以,点P的坐标是(﹣3,8),
当点P在点D的右边时,OG=OD+DG=1+9=10,
所以,点P的坐标是(3,﹣10),
综上所述,满足条件的点P共有4个,其坐标分别为(﹣ ,0)、( ,﹣2)、(﹣3,8)、(3,﹣10).
【解析】(1)把点A、B的坐标代入抛物线解析式,解方程组求出b、c的值,即可得解;(2)令y=0,利用抛物线解析式求出点C的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理列式表示出DC2与DE2 , 然后解方程求出m的值,即可得到点D的坐标;(3)根据点C、D、E的坐标判定△COD和△DFE全等,根据全等三角形对应角相等可得∠EDF=∠DCO,然后求出CD⊥DE,再利用勾股定理求出CD的长度,然后①分OC与CD是对应边;②OC与DP是对应边;根据相似三角形对应边成比例列式求出DP的长度,过点P作PG⊥y轴于点G,再分点P在点D的左边与右边两种情况,分别求出DG、PG的长度,结合平面直角坐标系即可写出点P的坐标.
科目:初中数学 来源: 题型:
【题目】如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、An﹣1为OA的n等分点,B1、B2、B3、…Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、An﹣1Bn﹣1 , 分别交(x≥0)于点C1、C2、C3、…、Cn﹣1 , 当B25C25=8C25A25时,则n= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.
(1)求A、B两种学习用品的单价各是多少元?
(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A的坐标是( )
A.(5,4)
B.(4,5)
C.(5,3)
D.(3,5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.
(1)求证:AD=BC;
(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年5月,某校组织了以“德润书香”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数和成绩进行整理,制成如下两幅不完整的统计图:
根据以上信息,解答下列问题:
(1)求本次抽取了多少份作品,并补全两幅统计图;
(2)已知该校收到参赛作品共900份,比赛成绩达到90分以上(含90分)的为优秀作品,据此估计该校参赛作品中,优秀作品有多少份?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过点A(﹣1,0)和点B(4,0),且与y轴交于点C,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点,连接CA,CD,PD,PB.
(1)求该抛物线的解析式;
(2)当△PDB的面积等于△CAD的面积时,求点P的坐标;
(3)当m>0,n>0时,过点P作直线PE⊥y轴于点E交直线BC于点F,过点F作FG⊥x轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
(1)如图a,求证:△BCP≌△DCQ;
(2)如图,延长BP交直线DQ于点E.
①如图b,求证:BE⊥DQ;
②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图2,“六芒星”是由两个全等正三角形组成,中心重合于点O且三组对边分别平行.点A,B是“六芒星”(如图1)的两个顶点,动点P在“六芒星”上(内部以及边界),若 ,则x+y的取值范围是( )
A.[﹣4,4]
B.
C.[﹣5,5]
D.[﹣6,6]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com