精英家教网 > 初中数学 > 题目详情

【题目】在一个不透明的口袋里装有分别标有数字-3、-1、0、2的四个小球除数字不同外小球没有任何区别每次试验先搅拌均匀.

(1)从中任取一球,将球上的数字记为a,则关于x的一元二次方程ax2-2ax+a+3=0有实数根的概率________;

(2)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.

【答案】(1);(2).

【解析】

1)根据方程组有实根计算出a的取值范围,再结合题意得出答案.2)根据列表,将所有等可能的情况表示出来,再根据题意得出答案.

(1)∵方程ax2-2ax+a+3=0有实数根,

∴△=4a2-4a(a+3)=-12a≥0,且a≠0,解得 a0

则方程ax2-2ax+a+3=0有实数根的概率为

(2)列表如下:

-3

-1

0

2

-3

(-3-1)

(0-3)

(2-3)

-1

(-3-1)

(0-1)

(2-1)

0

(-3-1)

(-10)

(20)

2

(-3-1)

(-12)

(02)

所有等可能的情况有12种,其中点(xy)落在第二象限内的情况有2种,

P==.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如右图,O为圆锥的顶点,M为底面圆周上一点,点POM上,一只蚂蚁从点P出发绕圆锥侧面爬行回到点P时所经过的最短路径的痕迹如图.若沿OM将圆锥侧面剪开并展平,所得侧面展开图是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙的直径,过点A作⊙的切线并在其上取一点C,连接OC交⊙于点D,BD的延长线交ACE,连接AD.

(1)求证:

(2)若AB=2,,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数(利润=售价﹣制造成本)

1)写出每月的利润(万元)与销售单价(元)之间的函数关系式;

2)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数yx+1的图象ly轴交于点CA1的坐标为(10),点B1在直线l上,且A1B1平行于y轴,连接CA1OB1交于点P1,过点A1A1B2OB1交直线l于点B2,过点B1B1A2CA1x轴于点A2A1B2B1A2交于点P2……,按此进行下去,则点P2019的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

(1)甲登山上升的速度是每分钟   米,乙在A地时距地面的高度b   米;

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;

(3)登山多长时间时,甲、乙两人距地面的高度差为70米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的周长为8,对角线BD2EF分别是边ADCD上的两个动点;且满足AE+CF2

1)求证:△BDE≌△BCF

2)判断△BEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y2x+2y轴交于A点,与反比例函数yx0)的图象交于点M,过MMHx轴于点H,且tanAHO2

1)求H点的坐标及k的值;

2)点Py轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;

3)点Na1)是反比例函数yx0)图象上的点,点Qm0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段AB,那么A﹣25)的对应点A的坐标是

A. 25B. 52C. 4D. 4

查看答案和解析>>

同步练习册答案