精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,一次函数yx+1的图象ly轴交于点CA1的坐标为(10),点B1在直线l上,且A1B1平行于y轴,连接CA1OB1交于点P1,过点A1A1B2OB1交直线l于点B2,过点B1B1A2CA1x轴于点A2A1B2B1A2交于点P2……,按此进行下去,则点P2019的坐标为_____

【答案】

【解析】

根据题意分别求出An2n10),Bn2n12n),可知Pn+1是直线AnBn+1与直线An+1Bn的交点,因此分别求出直线AnBn+1与直线An+1Bn的解析式,联立方程即可求出Pn+1的坐标,即可求解;

解:A110),A230),A370),An2n10),

B112),B234),B378),Bn2n12n),

∴直线AnBn+1与直线An+1Bn的解析式为:

y2x2n+1+2y=﹣x+2n+1+1

Pn+1

P2019

故答案为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(10分)如图,ABC中,以AC为直径的O与边AB交于点D,点E为O上一点,连接CE并延长交AB于点F,连接ED

(1)若B+FED=90°,求证:BC是O的切线;

(2)若FC=6,DE=3,FD=2,求O的直径

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(2,﹣9a),下列结论:①abc0;②4a+2b+c0;③5ab+c0;④若方程a(x+5)(x1)=﹣1有两个根x1x2,且x1x2,则﹣5x1x21;⑤若方程|ax2+bx+c|2有四个根,则这四个根的和为﹣4.其中正确的结论有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOB30°,点PAOB内的一定点,且OP6,若点MN分别是射线OAOB上异于点O的动点,则PMN周长的最小值是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某个周末,小丽从家去园博园参观,同时妈妈参观结束从园博园回家,小丽刚到园博园就发现要下雨,于是立即按原路返回,追上妈妈后,两人一同回家(小丽和妈妈始终在同一条笔直的公路上行走)如图是两人离家的距离y()与小丽出发的时间x()之间的函数图象,请根据图象信息回答下列问题:

(1)求线段BC的解析式;

(2)求点F的坐标,并说明其实际意义;

(3)与按原速度回家相比,妈妈提前了几分钟到家?并直接写出小丽与妈妈何时相距800米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x轴、y轴分别交于BC两点,抛物线经过BC两点,且与x轴交于点A

1)求该抛物线的函数表达式;

2)已知点M是第一象限内抛物线上的一个动点,过点MMN平行于y轴交直线BC于点N,连接AMBMAN,求四边形MANB面积S的最大值,并求出此时点M的坐标;

3)抛物线的对称轴交直线BC于点D,若Qy轴上一点,则在抛物线上是否存在一点P,使得以BDPQ为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.

(1)求每部A型手机和B型手机的销售利润分别为多少元?

(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.

①求y关于n的函数关系式;

②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?

(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某图书馆计划选购甲、乙两种图书.已知甲种图书每本价格是乙种图书每本价格的2.5倍,用800元单独购买甲种图书比用800元单独购买乙种图书要少24本.求:

1)乙种图书每本价格为多少元?

2)如果该图书馆计划购买乙种图书的本数比购买甲种图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本甲种图书?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,以A为圆心,AD长为半径画弧,交边AC于点E,连接CD

1)若∠A=28°,求∠ACD的度数;

2)设BC=aAC=b

①线段AD的长是方程的一个根吗?为什么?

②若AD=EC,求的值.

查看答案和解析>>

同步练习册答案