【题目】如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.
(1)求抛物线的解析式及点A、B的坐标;
(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;
(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)A(﹣1,0),B(4,0).(2)A'(1,4);(3)P的坐标为(,-)或(,2+).
【解析】试题分析:(1)将(0,2)代入抛物线解析式求得a的值,从而得出抛物线的解析式,再令y=0,得出x的值,即可求得点A、B的坐标;
(2)如图2,作A'H⊥x轴于H,可证明△AOC∽△COB,得出∠ACO=∠CBO,由A'H∥OC,即可得出A′H的长,即可求得A′的坐标;
(3)分两种情况:①如图3,以AB为直径作⊙M,⊙M交抛物线的对称轴于P(BC的下方),由圆周角定理得出点P坐标;②如图4,类比第(2)小题的背景将△ABC沿直线BC对折,点A的对称点为A',以A'B为直径作⊙M',⊙M'交抛物线的对称轴于P'(BC的上方),作M'E⊥A'H于E,交对称轴于F,求得M'F,在Rt△M'P'F中,由勾股定理得出P'F得的长,从而得出点P的坐标即可.
解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得﹣4a=2,
解得.
所以抛物线的解析式为.
令,可得:x1=﹣1,x2=4.
所以A(﹣1,0),B(4,0).
(2)如图2,作A'H⊥x轴于H,
因为,且∠AOC=∠COB=90°,
所以△AOC∽△COB,
所以∠ACO=∠CBO,可得∠ACB=∠OBC+∠BCO=90°,
由A'H∥OC,AC=A'C得OH=OA=1,A'H=2OC=4;
所以A'(1,4);
(3)分两种情况:
①如图3,以AB为直径作⊙M,⊙M交抛物线的对称轴于P(BC的下方),
由圆周角定理得∠CPB=∠CAB,
易得:MP=AB.所以P(,).
②如图4,类比第(2)小题的背景将△ABC沿直线BC对折,
点A的对称点为A',以A'B为直径作⊙M',⊙M'交抛物线的对称轴于P'(BC的上方),
则∠CP2B=∠CA'B=∠CAB.
作M'E⊥A'H于E,交对称轴于F.
则M'E=BH=,EF==.
所以M'F==1.
在Rt△M'P'F中,P'F=,
所以P'M=2+.
所以P'(,2+).
综上所述,P的坐标为(,)或(,2+).
科目:初中数学 来源: 题型:
【题目】你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)s(mm2)的反比例函数,其图象如图.
(1)写出y与s的函数关系式;
(2)求当面条粗3.2mm2时,面条的总长度是多少m?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“喜爱哪种动物的同学最多”的调查活动中,调查了全班60名同学,其中喜欢大熊猫的同学占70%,则喜欢大熊猫的学生人数是( ).
A. 42 B. 45 C. 60 D. 75
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程mx2﹣(m+2)x+2=0
(1)若方程的一个根为3,求m的值及另一个根;
(2)若该方程根的判别式的值等于1,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b)如:f(1,2)=(1,﹣2);g(a,b)=(b,a).如:g(1,2)=(2,1).据此得g(f(5,﹣9))=________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com