【题目】已知点到的最近距离是、最远距离是,则此圆的半径是________.若点到有切线,那么切线长是________.
【答案】5cm或2cm;
【解析】
试题考查知识点:点与圆的距离;切线的长度
思路点到圆上最大或最小的距离所在的线段必在直径所在的直线上
具体解答过程:
连接AO,并两边延长,交⊙O与A、B两点。分情况讨论:
①、如下图所示。当P在⊙O内部时,P到⊙O的最小距离为:PA=3cm,最远距离为:PB=7cm
∴⊙O直径AB=" PA+PB=" 3+7=10cm,半径r=5cm
这时,点P到⊙O没有切线;
②、如下图所示。当P在⊙O外部时,P到⊙O的最小距离为:PA=3cm,最远距离为:PB=7cm
∴⊙O直径AB=" PB-PA=" 7-3=4cm,半径r’=2cm
过P做⊙O的切线交⊙O与点C
连接OC,则OC⊥PC
在Rt△PCO中,OC=r’=2cm,PO=PA+AO=3+2=5cm
∴切线PC=
综上所述,符合条件的圆的半径为5cm或2cm,当点P到⊙O有切线时,切线长是cm。
科目:初中数学 来源: 题型:
【题目】如图,矩形的中,,,动点、分别以、的速度从点、同时出发,点从点向点移动.
(1)若点从点移动到点停止,点、分别从点、同时出发,问经过时、两点之间的距离是多少?
(2)若点从点移动到点停止,点随之停止移动,点、分别从点、同时出发,问经过多长时间、两点之间的距离是?
(3)若点沿着移动,点、分别从点、同时出发,点从点移动到点停止时,点随之也停止移动,试探求经过多长时间△的面积为2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数的图象经过点,且与二次函数的图象相交于、两点.
(1)求这两个函数的表达式及点的坐标;
(2)在同一坐标系中画出这两个函数的图象,并根据图象回答:当取何值时,一次函数的函数值小于二次函数的函数值;
(3)求△BOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像线段AB表示甲出发不足2小时因故停车检修),请根据图像所提供的信息,解决如下问题:
(1)求乙车所行路程y与时间x的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知、两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从地匀速开往地,乙车从地沿此公路匀速开往地,两车分别到达目的地后停止甲、乙两车相距的路程(千米)与甲车的行驶时间(时)之间的函数关系如图所示:
(1)乙年的速度为______千米/时,_____,______.
(2)求甲、乙两车相遇后与之间的函数关系式,并写出相应的自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点
A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速
度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后
第ts时,△EFG的面积为Scm2.
(1)当t=1s时,S的值是多少?
(2)写出S与t之间的函数解析式,并指出自变量t的取值范围;
(3)若点F在矩形的边BC上移动,当t为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC 中,D 是 BC 边的中点,E、F 分别在 AD 及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF ≌△CDE;
(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是( )
A. ∠COM=∠CODB. 若OM=MN,则∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com