【题目】性质探究
如图①,在等腰三角形中,,则底边与腰的长度之比为________.
理解运用
⑴若顶角为120°的等腰三角形的周长为,则它的面积为________;
⑵如图②,在四边形中,.
①求证:;
②在边上分别取中点,连接.若,,直接写出线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为________(用含的式子表示).
【答案】性质探究:;理解运用:(1);(2)①见解析;②;类比拓展:.
【解析】
性质探究:作CD⊥AB于D,则∠ADC=∠BDC=90°,由等腰三角形的性质得出AD=BD,∠A=∠B=30°,由直角三角形的性质得出AC=2CD,AD=CD,得出AB=2AD=2CD,即可得出结果;
理解运用:(1)同上得出则AC=2CD,AD=CD,由等腰三角形的周长得出4CD+2CD=8+4,解得:CD=2,得出AB=4,由三角形面积公式即可得出结果;
(2)①由等腰三角形的性质得出∠EFG=∠EGF,∠EGH=∠EHG,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH即可;
②连接FH,作EP⊥FH于P,由等腰三角形的性质得出PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,由四边形内角和定理求出∠FEH=120°,由等腰三角形的性质得出∠EFH=30°,由直角三角形的性质得出PE=EF=5,PF=PE=5,得出FH=2PF=10,证明MN是△FGH的中位线,由三角形中位线定理即可得出结果;
类比拓展:作AD⊥BC于D,由等腰三角形的性质得出BD=CD,∠BAD=∠BAC=α,由三角函数得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出结果.
性质探究
解:作CD⊥AB于D,如图①所示:
则∠ADC=∠BDC=90°,
∵AC=BC,∠ACB=120°,
∴AD=BD,∠A=∠B=30°,
∴AC=2CD,AD=CD,
∴AB=2AD=2CD,
∴=;
故答案为:;
理解运用
(1)解:如图①所示:
同上得:AC=2CD,AD=CD,
∵AC+BC+AB=8+4,
∴4CD+2CD=8+4,
解得:CD=2,
∴AB=4,
∴△ABC的面积=AB×CD=×4×2=4;
故答案为:4
(2)①证明:∵EF=EG=EH,
∴∠EFG=∠EGF,∠EGH=∠EHG,
∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;
②解:连接FH,作EP⊥FH于P,如图②所示:
则PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,
∴∠FEH=360°-120°-120°=120°,
∵EF=EH,
∴∠EFH=30°,
∴PE=EF=5,
∴PF=PE=5,
∴FH=2PF=10,
∵点M、N分别是FG、GH的中点,
∴MN是△FGH的中位线,
∴MN=FH=5;
类比拓展
解:如图③所示:作AD⊥BC于D,
∵AB=AC,
∴BD=CD,∠BAD=∠BAC=α,
∵sinα=,
∴BD=AB×sinα,
∴BC=2BD=2AB×sinα,
∴=2sinα;
故答案为:2sinα.
科目:初中数学 来源: 题型:
【题目】如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为( )
A. 100cm2B. 150cm2C. 170cm2D. 200cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于反比例函数,下列说法错误的是( )
A. 函数图象位于第一、三象限
B. 函数值y随x的增大而减小
C. 若A(-1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2
D. P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠DBE=α,
(1)如图1,若C点在射线AB上,且∠C=α,求证:;
(2)如图2,若C在射线AB上,α=60°,∠ABD=75°,EC∥AD,EC=2AB=4,求S四边形BCED;
(3)如图3,若α=90°,BD平分∠ADE,EF⊥AD于F,线段BF、DE交于G,若,直接写出的值(用含m,n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形中,点是边上的一个动点(点与点不重合),连接,过点作于点,交于点.
(1)求证:;
(2)如图2,当点运动到中点时,连接,求证:;
(3)如图3,在(2)的条件下,过点作于点,分别交于点,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:
有机蔬菜种类 | 进价(元/ ) | 售价(元/ ) |
甲 | 16 | |
乙 | 18 |
(1)该超市购进甲种蔬菜10和乙种蔬菜5需要170元;购进甲种蔬菜6和乙种蔬菜10需要200元.求,的值;
(2)该超市决定每天购进甲、乙两种蔬菜共100进行销售,其中甲种蔬菜的数量不少于20,且不大于70.实际销售时,由于多种因素的影响,甲种蔬菜超过60的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额(元)与购进甲种蔬菜的数量()之间的函数关系式,并写出的取值范围;
(3)在(2)的条件下,超市在获得的利润额(元)取得最大值时,决定售出的甲种蔬菜每千克捐出元,乙种蔬菜每千克捐出元给当地福利院,若要保证捐款后的盈利率不低于20%,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点在反比例函数的图象上,点在的延长线上,轴,垂足为,与反比例函数的图象相交于点,连接,.
(1)求该反比例函数的解析式;
(2)若,设点的坐标为,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙C的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB· DA.延长AE至F,使AE=EF,设BF=10,cos∠BED=.
(1)求证:△DEB∽△DAE;
(2)求DA,DE的长;
(3)若点F在B、E、M三点确定的圆上,求MD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com