分析 (1)根据题意,在△ABM中,∠BAM=30°,∠ABM=45°,BM=300($\sqrt{3}$+l)米.通过解直角Rt△MBD求得MD的长度;
(2)通过解直角Rt△ADM求得AM的长度.
解答 解:由题意可知∠MBD=45°,∠MAD=30°.
(1)在Rt△MBD中,DM=BM•sin∠DBM=300×sin45°=150$\sqrt{2}$(米);
(2)在Rt△ADM中,AM=$\frac{DM}{sin∠DAM}$=$\frac{150\sqrt{2}}{sin30°}$=300$\sqrt{2}$(米).
点评 本题考查了解直角三角形的应用--方向角问题.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
科目:初中数学 来源: 题型:选择题
| A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 8$\sqrt{6}$+24 | B. | 8$\sqrt{6}$+8 | C. | 24+8$\sqrt{3}$ | D. | 8+8$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com