精英家教网 > 初中数学 > 题目详情

【题目】【探究函数y=x+ 的图象与性质】
(1)函数y=x+ 的自变量x的取值范围是
(2)下列四个函数图象中函数y=x+ 的图象大致是
(3)对于函数y=x+ ,求当x>0时,y的取值范围. 请将下列的求解过程补充完整.
解:∵x>0
∴y=x+ =( 2+( 2=( 2+
∵( 2≥0
∴y≥
(4)若函数y= ,则y的取值范围

【答案】
(1)x≠0
(2)C
(3)4;4
(4)y≥13
【解析】解:(1)函数y=x+ 的自变量x的取值范围是x≠0;(2)函数y=x+ 的图象大致是C;(3)解:∵x>0 ∴y=x+ =( 2+( 2=( 2+4
∵( 2≥0
∴y≥4.
4)y= =x+ ﹣5═( 2+( 2﹣5=( + 2+13
∵( 2≥0,
∴y≥13.
所以答案是:x≠0,C,4,4,y≥13,
【考点精析】解答此题的关键在于理解一次函数的性质的相关知识,掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小,以及对反比例函数的性质的理解,了解性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知y是x的反比例函数,且x=8时,y=12.
(1)写出y与x之间的函数关系式;
(2)如果自变量x的取值范围是2≤x≤3,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 的直径, 是弦, .若用扇形 (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形中,cm,cm,点的中点.若点 在线段上以1 cm/s的速度由点向点运动,到点时不动.同时,点在线段上由点向点运动.

(1)若点的运动速度与点的运动速度相等,经过1 s后,是否全等?请说明理由,并判断此时线段的位置关系;

(2)若点的运动速度与点的运动速度相等,运动时间为s,设的面积为cm2,请用含的代数式表示;

(3)若点的运动速度与点的运动速度不相等,当点的运动速度为多少时,能够使全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3分)如图,AD△ABC的角平分线,DE⊥AC,垂足为EBF∥ACED的延长线于点F,若BC恰好平分∠ABFAE=2BF.给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF,其中正确的结论共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题9把代数式通过配凑等手段得到完全平方式再运用完全平方式是非负性这一性质增加问题的条件这种解题方法叫做配方法配方法在代数式求值解方程最值问题等都有着广泛的应用

例如:用配方法因式分解:a2+6a+8

原式=a2+6a+9-1

=a+32 –1

=a+3-1)(a+3+1

=a+2)(a+4

M=a2-2ab+2b2-2b+2利用配方法求M的最小值

a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1

=a-b2+b-12 +1

a-b20,(b-12 0

当a=b=1时M有最小值1

请根据上述材料解决下列问题:

1在横线上添上一个常数项使之成为完全平方式:a 2+4a+

2用配方法因式分解 a2-24a+143

3M=a2+2a +1M的最小值

4已知a2+b2+c2-ab-3b-4c+7=0a+b+c的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于 MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC△DBE中,BC=BE,还需要添加两个条件才能使△ABC≌△DBE,则不能添加的一组条件是(

A. AC=DE,∠C=∠E B. BD=AB,AC=DE C. AB=DB,∠A=∠D D. ∠C=∠E,∠A=∠D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求下列各式的值

(1) (2)

(3) (4)

(5)+ (6)

查看答案和解析>>

同步练习册答案