精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F. 求证:四边形AEDF是菱形.

【答案】证明:∵AD平分∠BAC ∴∠BAD=∠CAD
又∵EF⊥AD,
∴∠AOE=∠AOF=90°
∵在△AEO和△AFO中

∴△AEO≌△AFO(ASA),
∴EO=FO,
∵EF垂直平分AD,
∴EF、AD相互平分,
∴四边形AEDF是平行四边形
又EF⊥AD,
∴平行四边形AEDF为菱形.
【解析】由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF.
【考点精析】根据题目的已知条件,利用线段垂直平分线的性质和菱形的判定方法的相关知识可以得到问题的答案,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N.

(1)求反比例函数的解析式;
(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3)

(1)求抛物线的函数表达式.
(2)求直线BC的函数表达式和∠ABC的度数.
(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿BD对折,点A落在E处,BECD相交于F,若AD=3BD=6

1)求证:△EDF≌△CBF

2)求∠EBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtABCRtADE,其中∠ACB=AED=90°.

(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;

(2)改变ADE的位置,使DEBC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EFDE之间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.
(1)求证:BE=CE;
(2)若BD=2,BE=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,AC=,tanB=,半径为2的⊙C,分别交AC,BC于点D,E,得到

(1)求证:AB为⊙C的切线;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④SABC=S四边形AOCP , 其中正确的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P(4,a)在正比例函数y= x的图象上,则点Q(2a﹣5,a)关于y轴的对称点Q'坐标为

查看答案和解析>>

同步练习册答案