【题目】如图1,由于四边形具有不稳定性,因此在同一平面推矩形的边可以改变它的形状(推移过程中边的长度保持不变).已知矩形ABCD,AB=4cm,AD=3cm,固定边AB,推边AD,使得点D落在点E处,点C落在点F处.
(1)如图2,如果∠DAE=30°,求点E到边AB的距离;
(2)如图3,如果点A、E、C三点在同一直线上,求四边形ABFE的面积.
【答案】(1)点E到边AB的距离是cm;(2)
【解析】
(1)过点E作EH⊥AB轴,垂足为H,根据矩形的性质得到∠DAB=90°,AD∥EH,根据平行线的性质得到∠DAE=∠AEH,求得∠AEH=30°,解直角三角形即可得到结论;
(2)过点E作EH⊥AB,垂足为H.根据矩形的性质得到AD=BC.得到BC=3cm.根据勾股定理得到cm,根据平行线分线段成比例定理得到cm,根据四边形的性质得到AD=AE=BF,AB=DC=EF.求得四边形ABFE是平行四边形,于是得到结论.
解:(1)如图,过点E作EH⊥AB轴,垂足为H,
∵四边形ABCD是矩形,
∴∠DAB=90°,
∴AD∥EH,
∴∠DAE=∠AEH,
∵∠DAE=30°,
∴∠AEH=30°.
在直角△AEH中,∠AHE=90°,
∴EH=AEcos∠AEH,
∵AD=AE=3cm,
∴cm,
即点E到边AB的距离是cm;
(2)如图3,过点E作EH⊥AB,垂足为H.
∵四边形ABCD是矩形,
∴AD=BC,
∵AD=3cm,
∴BC=3cm,
在直角△ABC中,∠ABC=90°,AB=4cm,
∴cm,
∵EH∥BC,
∴,
∵AE=AD=3 cm,
∴,
∴cm,
∵推移过程中边的长度保持不变,
∴AD=AE=BF,AB=DC=EF,
∴四边形ABFE是平行四边形,
∴cm2.
科目:初中数学 来源: 题型:
【题目】5G时代即将来临,湖北省提出“建成全国领先、中部一流5G网络”的战略目标.据统计,目前湖北5G基站的数量有1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
(1)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率;
(2)若2023年保持前两年5G基站数量的年平均增长率不变,到2023年底,全省5G基站数量能否超过29万座?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图①,若∠ABC=∠ADC=90°,求证:ED·EA=EC·EB;
(2)如图②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;
(3)如图③,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某二次函数的图象是一条顶点为P(4.-4)的抛物线,它经过原点和点A,它的对称轴交线段
OA于点M.点N在对移轴上,且点M、N关于点P对称,连接AN,ON
(1)求此二次函数的解析式:
(2)若点A的坐标是(6,-3).,请直接写出MN的长
(3)若点A在抛物线的对称轴右侧运动时,则∠ANM与∠ONM有什么数量关系?并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点与称为一对泛对称点.
(1)若点,是一对泛对称点,求的值;
(2)若,是第一象限的一对泛对称点,过点作轴于点,过点作轴于点,线段,交于点,连接,,判断直线与的位置关系,并说明理由;
(3)抛物线交轴于点,过点作轴的平行线交此抛物线于点(不与点重合),过点的直线与此抛物线交于另一点.对于任意满足条件的实数,是否都存在,是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点,探究当>时的取值范围;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育老师统计了七年级甲、乙两个班女生的身高情况,并绘制了如下不完整的统计图.请根据图中信息,解决下列问题:
(1)求甲、乙两个班共有女生多少人?
(2)请将频数分布直方图补充完整;
(3)求扇形统计图中部分所对应的扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为( )
A.4B.6C.8D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】书法是我国的文化瑰宝,研习书法能培养高雅的品格.某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用A,B,C,D表示,并将测试结果绘制成如图两幅不完整的统计图.
请根据统计图中的信息解答以下问题:
(1)本次抽取的学生人数是 ,扇形统计图中A所对应扇形圆心角的度数是 .
(2)把条形统计图补充完整.
(3)若该学校共有2800人,等级达到优秀的人数大约有多少?
(4)A等级的4名学生中有3名女生1名男生,现在需要从这4人中随机抽取2人参加电视台举办的“中学生书法比赛”,请用列表或画树状图的方法,求被抽取的2人恰好是1名男生1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴交于点A、B,与轴交于点C,点B的坐标为 ,点在轴上,连接AD.
(1)= ;
(2)若点是抛物线在第二象限上的点,过点作PF⊥x轴,垂足为,与交于点E.是否存在这样的点P,使得PE=7EF?若存在,求出点的坐标;若不存在,请说明理由;
(3)若点在抛物线上,且点的横坐标大于-4,过点作,垂足为H,直线与轴交于点K,且,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com