分析 取AB的中点D.连接CD.根据三角形的边角关系得到OC小于等于OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,根据D为AB中点,得到BD为3,根据三线合一得到CD垂直于AB,在Rt△BCD中,根据勾股定理求出CD的长,在Rt△AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD等于AB的一半,由AB的长求出OD的长,进而求出DC+OD,即为OC的最大值.
解答
解:如图,取AB的中点D,连接CD.
∵AC=BC=5,AB=6.
∵点D是AB边中点,
∴BD=$\frac{1}{2}$AB=3,
∴CD=$\sqrt{{BC}^{2}-{BD}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4;
连接OD,OC,有OC≤OD+DC,
当O、D、C共线时,OC有最大值,最大值是OD+CD,
又∵△AOB为直角三角形,D为斜边AB的中点,
∴OD=$\frac{1}{2}$AB=3,
∴OD+CD=3+4=7,即OC=7.
故答案为:7.
点评 此题考查的是勾股定理,等腰三角形的性质,其中找出OC最大时的长为CD+OD是解本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com