【题目】如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.给出下列结论:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=△ABC;其中正确的结论是______________(只填序号)。
【答案】①②③.
【解析】
本题先结合平行四边形性质,根据ASA得出△ABM≌△CDN,从而得出DN=BM,AM=CN;再由三角形中位线得出CN=MN,BM=DN=2NF,同时S =S.
∵因为平行四边形ABCD,
∴AD=BC,AB=CD,且AD∥BC,AB∥CD∠BAE=∠DCF,
∵E、F分别是边AD、BC的中点,
∴AE=DE=BF=CF,
∴四边形BFDE是平行四边形
∴BE∥DF,
在△ABE和△CDF中
∵ ,
∴△ABE≌△CDF(SAS),
∴∠ABM=∠CDN,
∵AB∥CD,
∴∠BAM=∠DCN,
在△ABM和△CDN中
∵ ,
∴△ABM≌△CDN(ASA),∴①正确;
∵E是AD的中点,BE∥DF,
∴M是AN的中点,
同理N是CM的中点,
∴AM=AC,故②正确;
∵F为BC的中点,
∴NF为三角形BCM的中位线,
∴BM=2NF
∴DN=2NF,故③正确;
∵CN=MN=AM,
∴S =S,故④不正确,
∴其中正确的结论是①②③.
故答案为:①②③.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点逆时针旋转90°,得到△A1B1C1,将△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2.
(1)画出△A1B1C1和△A2B2C2;
(2)△ABC经旋转、平移后点A的对应点分别为A1、A2,请写出点A1、A2的坐标;
(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电脑公司经销甲种型号电脑,每台售价4000元.为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台.
(1)有几种进货方案?
(2)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少? 若考虑投入成本最低,则应选择哪种进货方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如右图所示,图象过点(-1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(-2,y1),点B(,y2),点C(,y3)在该函数图象上,则y1<y3<y2;其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com