【题目】已知:、、为△ABC的三边长,且试判定△ABC的形状。
【答案】△ABC为等腰三角形,理由见解析;
【解析】
先把前面两项展开得到ab-ac+bc-ab+c(a-b)=0,再分组分解,得到公因式(a-b),则ab(a-b)-c(a-b)(a+b)+c(a-b)=0,所以把等式左边分解得到(a-b)(ab-ac-bc+c)=0,接着在把中括号内分组分解得到(a-b)(b-c)(a-c)=0,然后根据有理数积的性质得到a-b=0或b-c=0或a-c=0,于是根据等腰三角形的判定方法进行判断.
△ABC为等腰三角形,理由如下:
∵a (bc)+ b(ca)+c(ab)=0,
∴abac+bcab+c(ab)=0,
∴ab(ab)c(ab)+c(ab)=0,
∴ab(ab)c(ab)(a+b)+c(ab)=0,
∴(ab)(abacbc+c)=0,
∴(ab)[a(bc)c(bc)]=0,
∴(ab)(bc)(ac)=0,
∴ab=0或bc=0或ac=0,
∴△ABC为等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.
(1)如图1,当点D在AB上,点E在AC上时
①证明:△BFC是等腰三角形;
②请判断线段CF,DF的关系?并说明理由;
(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.
(1)求证:AD=CE;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了准备“迎新活动”,用700元购买了甲、乙两种小礼品260个,其中购买甲种礼品比乙种礼品少用了100元.
(1)购买乙种礼品花了______元;
(2)如果甲种礼品的单价比乙种礼品的单价高20%,求乙种礼品的单价.(列分式方程解应用题)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
(1)直接写出直线L的解析式;
(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,EF⊥AC于点F,DB⊥AC于点M,∠1=∠2,∠3=∠C,请问AB与MN平行吗?说明理由.完成下列推理过程:
解:AB∥MN.理由如下:
∵EF⊥AC,DB⊥AC,(已知),
∴∠CFE=∠CMD=90°,( )
∴EF∥DM,( )
∴∠2=∠CDM,( )
∵∠1=∠2,(已知),
∴∠1=∠ ( )
∴MN∥CD,( )
∵∠3=∠C,(已知),
∴AB∥CD,( ),
∴AB∥MN.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点A(a,0),B(b,3),C(c,0),满足++=0.
(1)分别求出点,,的坐标及三角形ABC的面积.
(2)如图2.过点C作于点D,F是线段AC上一点,满足,若点G是第二象限内的一点,连接DG,使,点E是线段AD上一动点(不与A、D重合),连接CE交DF于点H,点E在线段AD上运动的过程中,的值是否会变化?若不变,请求出它的值;若变化,请说明理由.
(3)如图3,若线段AB与轴相交于点F,且点F的坐标为(0,),在坐标轴上是否存在一点P,使三角形ABP和三角形ABC的面积相等?若存在,求出P点坐标.若不存在,请说明理由.(点C除外)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.给出下列结论:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=△ABC;其中正确的结论是______________(只填序号)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(﹣4,4),一个以A为顶点的45°角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E、F,连接EF.当△AEF是直角三角形时,点E的坐标是_____
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com