精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,A与B的坐标分别为(-4,0),(2,0),C点坐标为(0,3).
(1)求抛物线的解析式;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
考点:二次函数综合题
专题:
分析:(1)把A,B的坐标(-4,0),(2,0),C(0,3)代入y=ax2+bx+c求解即可,
(2)先求出抛物线的对称轴为直线x=-1,设直线AC与对称轴的交点为E,易求直线AC的解析式为y=
3
4
x+3,由x=-1时,求出y的值,由AB=2-(-4)=6,OC=3,由△ACB的面积=
1
2
×6×3=9,可得△ACD的面积=
1
2
DE•4=9,可得DE的值,分两种情况①点D在点E的上方时,②点D在点E的下方时,分别求解即可.
(3)过A,B分别作x轴的垂线,这两条直线总是与直线l有交点,即两个点M,再以AB为直径的⊙G如果与直线l相切,就只有一个点M,连接GM,那么GM⊥l,在RT△EGM中,求出GM,GE的值,可得EM的值,在RT△EM1A中,由AE的值,结合tan∠M1EA=
M1A
AE
=
3
4
,可得M1A的值,由点M1的坐标可得过M1,E的直线l,再根据对称性直线l求出另一条直线.
解答:解:(1)设抛物线的解析式为:y=ax2+bx+c,把A,B的坐标(-4,0),(2,0),C(0,3)代入得
0=16a-4b+c
0=4a+2b+c
3=c
,解得
a=-
3
8
b=-
3
4
c=3

所以抛物线的解析式为:y=-
3
8
x2-
3
4
x+3.
(2)抛物线的对称轴为直线x=-
-
3
4
2×(-
3
8
)
=-1,
设直线AC与对称轴的交点为E,易求直线AC的解析式为y=
3
4
x+3,
x=-1时,y=-
3
4
x+3=
9
4

AB=2-(-4)=6,OC=3,
△ACB的面积=
1
2
×6×3=9,
△ACD的面积=
1
2
DE•4=9,
解得DE=
9
2

点D在点E的上方时,点D的纵坐标为
9
4
+
9
2
=
27
4

点D在点E的下方时,点D的纵坐标为
9
4
-
9
2
=-
9
4

所以,点D的坐标为(-1,
27
4
)或(-1,-
9
4
).
(3)如图,过A,B分别作x轴的垂线,这两条直线总是与直线l有交点,即两个点M1和M2,以AB为直径的⊙G如果与直线l相切,就只有一个点M,连接GM,那么GM⊥l,

∵在RT△EGM中,GM=3,GE=5,
∴EM=4,
在RT△EM1A中,
∵AE=8,tan∠M1EA=
M1A
AE
=
3
4

∴M1A=6,
∴点M1的坐标为(-4,6),过M1,E的直线l为y=-
3
4
x+3,
根据对称性直线l还可以是y=
3
4
x+3.
点评:本题主要考查了二次函数与方程、几何知识的综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

把立方体的六个面分别涂上六种不同的颜色,并画上朵数不同的花,各面上的颜色与花的朵数如表:
颜色绿
花的朵数654321
现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个(如图)水平放置的长方体,那么长方体的下底面共有
 
朵花.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(1-
1
32
)(1-
1
42
)(1-
1
52
)…(1-
1
20042
).

查看答案和解析>>

科目:初中数学 来源: 题型:

求下列函数的最大值或最小值:
(1)y=x2-2x-3;
(2)y=-2x2-5x+7;
(3)y=3x2+2x;
(4)y=
5
2
x-2-3x2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB的内部有一点P,∠AOB=60°.
(1)作图:过点P作PC∥OA,PD∥OB;
(2)量出∠CPD的度数,说出它与∠AOB的关系;
(3)归纳:若∠α,∠β的两边互相平行,则α,β的关系是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(1-
1
22
)(1-
1
32
)…(1-
1
1002
).

查看答案和解析>>

科目:初中数学 来源: 题型:

若关于x的方程
x
x-3
=2+
k
x-3
无解,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

化简:(1)
12
2
;(2)
3
6
;(3)
2
3
40
;(4)
5n
3
n
;(5)
2xy
2x
;(6)
-
45y2
3
5y

查看答案和解析>>

科目:初中数学 来源: 题型:

已知
32x-11
34y-5
互为相反数,求x+2y的立方根.

查看答案和解析>>

同步练习册答案