【题目】如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.
(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.
①依题意补全图1;
②试判断AE与BD的数量关系,并证明你的结论;
(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;
(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.
【答案】(1)①图形见解析②AE=BD(2)判断: (3)判断,证明见解析
【解析】试题分析:(1)①根据题意画图即可;
②连接AC,证明△BCD≌△ACE即可;
(2)连接DE,可证三角形ADE为直角三角形,由勾股定理即可得出结论;
(3)将线段CF绕点C顺时针旋转60°得到线段CE,连接EF、EA,证明△BCD≌△ACE和直角三角形AEF,结合勾股定理即可证明.
试题解析:(1)①补全图形,如图1
②判断: AE=BD
证明:如图2,连接AC,∵BA=BC,且∠ABC=60° ∴△ABC是等边三角形
∴∠ACB=60°,且CA=CB∵将线段CD绕点C顺时针旋转60°得到线段CE ∴CD=CE,且∠DCE=60°
∴∠BCD=∠ACE
∴△BCD≌△ACE(SAS) ∴AE=BD
(2)判断:
(3)判断:
证明:如图3,连接AC,∵BA=BC,且∠ABC=60°
∴△ABC是等边三角形,∴∠ACB=60°,且CA=CB
将线段CF绕点C顺时针旋转60°得到线段CE,连接EF、EA
∴CE=CF,且∠FCE=60°,∴△CEF是等边三角形
∴∠CFE=60°,且FE=FC,∴∠BCF=∠ACE
∴△BCF≌△ACE(SAS),∴AE=BF
∵∠AFC=150°, ∠CFE=60°,∴∠AFE=90°
在Rt△AEF中, 有:
∴.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B中心对称得C2,C2与x轴交于另一点C,将C2关于点C中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 , 作正方形A1 B1 C1 C;延长C1B1交x轴于点A2 , 作正方形A2B2C2C1…按这样的规律进行下去,若正方形ABCD算第一个正方形,则第2010个正方形的面积为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下面文字,然后按要求解题.
例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:
1+2+3+4+5+…+100
=(1+100)+(2+99)+(3+98)+…+(50+51)
=101× = .
(1)补全例题解题过程;
(2)请猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n= .
(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为( , 1),则点B的坐标为( )
A.(﹣1,+1)
B.(﹣1,1)
C.(1,+1)
D.(﹣1,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)某种电子产品共件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为.
(1)该批产品有正品 件;
(2)如果从中任意取出件,利用列表或树状图求取出件都是正品的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com