精英家教网 > 初中数学 > 题目详情

【题目】某市体育中考现场考试内容有三项:50米跑为必测项目.另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.

1)每位考生有_________种选择方案;

2)求小明与小刚选择同种方案的概率.

【答案】14;(2

【解析】

1)先列举出毎位考生可选择所有方案:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.

2)利用数形图展示所有16种等可能的结果,其中选择两种方案有12种,根据概率的概念计算即可.

解:(1)毎位考生可选择:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.

故答案为:4

2)用代表四种选择方案,用树状图分析如下:

用列表法分析如下:

小明与小刚选择同种方案

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】密码锁有三个转轮,每个转轮上有十个数字:012…9.小黄同学是9月份中旬出生,用生日月份+日期设置密码:9××(注:中旬为某月中的11日﹣20日),小张同学要破解其密码:

1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是   

2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有一直角三角形AOBO为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线yax2+bx+c经过点ABC

(1)求抛物线的解析式;

(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴lx轴交于一点E,连接PE,交CDF,求以CEF为顶点三角形与△COD相似时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数的图象,下列说法正确的有____________.

④当时,yx的增大而增大;

⑤方程的根是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线yax2+bx3a0)与x轴交于点A(﹣10)和点B,且OB3OA,与y轴交于点C,此抛物线顶点为点D

1)求抛物线的表达式及点D的坐标;

2)如果点Ey轴上的一点(点E与点C不重合),当BEDE时,求点E的坐标;

3)如果点F是抛物线上的一点.且∠FBD135°,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知抛物线yax2a0)与一次函数ykx+b的图象相交于A(﹣1,﹣1),B2,﹣4)两点,点P是抛物线上不与AB重合的一个动点,点Qy轴上的一个动点.

1)请直接写出akb的值及关于x的不等式ax2kx2的解集;

2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;

3)是否存在以PQAB为顶点的四边形是平行四边形?若存在,请直接写出PQ的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知是等腰直角三角形,,点DBC的中点作正方形DEFG,使点AC分别在DGDE上,连接AEBG

试猜想线段BGAE的数量关系是______

将正方形DEFG绕点D逆时针方向旋转

判断中的结论是否仍然成立?请利用图2证明你的结论;

,当AE取最大值时,求AF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DEDF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6BE=8DE=10.

1)求证:∠BEC=90°

2)求cos∠DAE.

查看答案和解析>>

同步练习册答案