精英家教网 > 初中数学 > 题目详情
9.计算:$\sqrt{81}$+$\root{3}{-27}$-$\sqrt{(-5)^{2}}$-|-2$\sqrt{3}$|=1-2$\sqrt{3}$.

分析 直接利用算术平方根的定义结合立方根的定义和绝对值的性质分别化简求出答案.

解答 解:原式=9-3-5-2$\sqrt{3}$
=1-2$\sqrt{3}$.
故答案为:1-2$\sqrt{3}$.

点评 此题主要考查了实数运算,正确化简各数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.规定符号?的意义为a?b=ab-a2,那么-3?4=-21.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知P为正方形ABCD内一点.△BPC为等边三角形.BD交PC于点E,若AB=2.则EC=(  )
A.2$\sqrt{3}$+1B.2$\sqrt{3}$-2C.1.5D.$\frac{5}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-$\frac{3}{8}$x-$\frac{39}{8}$与x轴及直线x=-5分别交于点C,E,点B,E关于x轴对称,连接AB.
(1)求点C,E的坐标及直线AB的解析式;
(2)设面积的和S=S△CDE+S四边形ABDO,求S的值;
(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,Rt△ABC中,∠ACB=90°,点D是△ABC内一点,BD=8cm,点E和F分别是边AB和BC上的动点,若△DEF周长的最小值是8cm,则∠BAC的度数为(  )
A.45°B.50°C.55°D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列说法正确的有(  )
①不相交的两条直线是平行线;
②经过一点,有且只有一条直线与这条直线平行;
③两条直线被第三条直线所截,同旁内角互补;
④在同一平面内,若直线a⊥b,b⊥c,则直线a∥c.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在△ABC中,∠BAC=90°,点D、E分别为边AB、AC上的点,且DE∥BC,将△ADE绕点A旋转,点D、E的对应点分别为D′、E′,若点D的对应点D′恰好落在BC上,连接CE′,请解决如下问题:

(1)如图1,若∠B=45°,则∠D′CE′=90度,AC、CD′、CE′的数量关系为C′E+CD′=$\sqrt{2}$AC.
(2)如图2,若∠B=30°,求∠D′CE′的度数和AC,CD′,CE′之间的数量关系,请你写出求解过程.
(3)如图3,在四边形ABCD中,∠BAD=∠BCD=90°,Ab=4,AD=2,AC=$\sqrt{10}$,请你直接写出四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2$\sqrt{73}$cm,4$\sqrt{13}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:
(1)求证:△APR,△BPQ,△CQR的面积相等;
(2)求△PQR面积的最小值;
(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案