如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.
问题引入:
(1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC= ;当点D是BC边上任意一点时,S△ABD:S△ABC= (用图中已有线段表示).
探索研究:
(2)如图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想S△BOC与S△ABC之比应该等于图中哪两条线段之比,并说明理由.
拓展应用:
(3)如图③,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想
的值,并说明理由.
![]()
(1)1:2,BD:BC;
(2)S△BOC:S△ABC=OD:AD,理由见解析;
(3)
=1,理由见解析.
【解析】
试题分析:(1)根据三角形的面积公式,两三角形等高时,可得两三角形底与面积的关系,可得答案;
(2)根据三角形的面积公式,两三角形等底时,可得两三角形的高与面积的关系,可得答案;
(3)根据三角形的面积公式,两三角形等底时,可得两三角形的高与面积的关系,再根据分式的加减,可得答案.
试题解析:(1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC=1:2;当点D是BC边上任意一点时,S△ABD:S△ABC=BD:BC,
故答案为:1:2,BD:BC;
(2)S△BOC:S△ABC=OD:AD,
如图②作OE⊥BC与E,作AF⊥BC与F,,
∵OE∥AF,
∴△OED∽△AFD,
∴
.
∵
,
∴
;
(3)
=1,理由如下:
由(2)得
,
,
.
∴
=
=
=1.
.
考点:相似形综合题.
科目:初中数学 来源:2014年初中毕业升学考试(四川宜宾卷)数学(解析版) 题型:选择题
下列运算的结果中,是正数的是( )
A.(﹣2014)﹣1 B.﹣(2014)﹣1
C.(﹣1)×(﹣2014) D.(﹣2014)÷2014
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川南充卷)数学(解析版) 题型:选择题
二次函数
=
(
≠0)图象如图所示,下列结论:①
>0;②
=0;③当
≠1时,
>
;④
>0;⑤若
=
,且
≠
,则
=2.其中正确的有( )
A.①②③ B.②④ C.②⑤ D.②③⑤
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川内江卷)数学(解析版) 题型:解答题
如图,一次函数y=kx+b的图象与反比例函数y=
(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.
(1)求一次函数、反比例函数的解析式;
(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川内江卷)数学(解析版) 题型:填空题
如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件: ,使四边形ABCD为平行四边形(不添加任何辅助线).
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(吉林卷)数学(解析版) 题型:解答题
如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长AO交⊙O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题:
(1)求证:CD是⊙O的切线;
(2)若BC=3,CD=4,求平行四边形OABC的面积.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(北京卷)数学(解析版) 题型:选择题
园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积
(单位:平方米)与工作时间
(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为
![]()
A.40平方米 B.50平方米 C.80平方米 D.100平方米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com