精英家教网 > 初中数学 > 题目详情

【题目】从甲、乙两名射击选手中选出一名选手参加省级比赛,现对他们分别进行5次射击测试,成绩分别为(单位:环)甲:56798;乙:84869

1)甲运动员5次射击成绩的中位数为________环,极差是________环;乙运动员射击成绩的众数为________环.

2)已知甲的5次成绩的方差为2,通过计算,判断甲、乙两名运动员谁的成绩更稳定.

【答案】(1)中位数是7 极差是4 众数是8环;

2)运动员甲的成绩更稳定

【解析】

1)分别根据中位数,极差和众数的概念求解即可;

2)先计算甲、乙的平均数,再计算乙的方差,最后与甲的方差进行比较即可得解.

1)甲的射击成绩从小到大排列为:56789

甲的射击成绩的中位数是:7

甲的射击成绩的极差是:9-5=4

乙的射击成绩出现次数最多的是8环,故乙的射击成绩的众数是8环;

2)甲的射击成绩的平均数为:(环),

乙的射击成绩的平均数为:(环),

方差为:=3.2.

3.2>2

∴运动员甲的成绩更稳定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P是正三角形ABC内的一点,且PA6PB8PC10.若将△PAC绕点A逆时针旋转后,得到△PAB

1)求点P与点P′之间的距离;

2)求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=CDEFGH分别为ADBCBDAC的中点,顺次连接EGFH

1)猜想四边形EGFH是什么特殊的四边形,并说明理由;

2)当∠ABC与∠DCB满足什么关系时,四边形EGFH为正方形,并说明理由;

3)猜想:∠GFH、∠ABC、∠DCB三个角之间的关系.直接写出结果____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,AB=AD,BC=CD.
(1)如图1,请连接AC,BD,求证:AC垂直平分BD;

(2)如图2,若∠BCD=60°,∠ABC=90°,E,F分别为边BC,CD上的动点,且∠EAF=60°,AE,AF分别与BD交于G,H,求证:△AGH∽△AFE;

(3)如图3,在(2)的条件下,若 EF⊥CD,直接写出 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2 , …,按图所示的方式放置.点A1、A2、A3 , …和点B1、B2、B3 , …分别在直线y=kx+b和x轴上.已知C1(1,﹣1),C2 ),则点A3的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点OOE是∠AOD的平分线,若∠AOC=60°,OFOE

(1)判断OF把∠AOC所分成的两个角的大小关系并证明你的结论;

(2)求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在四边形ABCD中,ABAD∠BAD120°∠B∠ADC90°EF分别是 BCCD上的点,且∠EAF60°,探究图中线段BEEFFD之间的数量关系.

小王同学探究此问题的方法是延长FD到点G,使DGBE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是

探索延伸:

2)如图2,若在四边形ABCD中,ABAD∠B∠D180°EF分别是BCCD上的点,且∠EAF∠BAD,上述结论是否仍然成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,且满足方程组,连接

1)求的面积;

2)动点从点出发,以每秒个单位长度的速度沿轴向左运动,连接,设点运动的时间为秒, 的面积为 试用含的式子表示

3)在的条件下,点,点上一点,连接,点延长线上,且,连接 当点轴负半轴上, 四边形的面积与的面积比为时,求此时值和点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.

1)第一次购书的进价是多少元?

2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?

查看答案和解析>>

同步练习册答案