【题目】已知:如图,∠B=90°AB∥DF,AB=3cm,BD=8cm,点C是线段BD上一动点,点E是直线DF上一动点,且始终保持AC⊥CE。
(1)试说明:∠ACB =∠CED
(2)当C为BD的中点时, ABC与EDC全等吗?若全等,请说明理由;若不全等,请改变BD的长(直接写出答案),使它们全等。
(3)若AC=CE ,试求DE的长
(4)在线段BD的延长线上,是否存在点C,使得AC=CE,若存在,请求出DE的长及△AEC的面积;若不存在,请说明理由。
【答案】(1)见解析;(2)当C为BD中点时, ABC与 EDC不全等;(3)5cm;(4)见解析.
【解析】试题分析:(1)根据平行线的性质和三角形的内角和定理求出即可;
(2)根据全等三角形的判定定理进行判断,即可得出答案;
(3)根据全等得出对应边相等,即可得出答案;
(4)求出两三角形全等,得出对应边相等,再根据勾股定理和三角形面积公式求出即可.
试题解析:(1)
∵AC⊥CE,
(2)当C为BD的中点时,△ABC与△EDC不全等,当BD的长是6时,它们全等,
理由是:∵BD=6,C为BD中点,
∴BC=CD=3=AB,
在△ABC和△CDE中
(3)∵在△ABC和△CDE中
∴AB=CD=3cm,
∴DE=BC=8cm3cm=5cm;
(4)
∵AC⊥CE,
∴∠ECD=∠BAC;
当CD=AB=3cm时,AC=CE,
∵在△ABC和△CDE中
∴AC=CE,DE=BC=8cm,
∵AB=3cm,BC=BD+CD=8cm+3cm=11cm,
∴在中,由勾股定理得;
∴△AEC的面积是
科目:初中数学 来源: 题型:
【题目】下列各式中,能用平方差公式计算的是( )
A.(-x+2y)(x-2y)B.(3x-5y)(-3x-5y)
C.(1-5m)(5m-1)D.(a+b)(b+a)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小丽与小明在讨论问题:
小丽:如果你把7498近似到4位数,你就会得到7000.
小明:不,我有另外一种解答方法,可以得到不同的答案,首先,将7498近似到百位,得到7500,接着再把7500近似到千位,就得到8000.
你怎样评价小丽和小明的说法呢?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本,小亮用31元买了同样的钢笔2支和笔记本5本.
(1)求每支钢笔和每本笔记本的价格;
(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会表现突出的同学,要求笔记本数不少于钢笔数.请问:有多少购买方案?请你一一写出.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(2,a)在抛物线y=x2上
(1)求A点的坐标;
(2)在x轴上是否存在点P,使△OAP是等腰三角形?若存在写出P点坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com