分析 (1)设AB交OP于D,如图,根据切线的性质得∠PAO=90°,再根据含30度的直角三角形三边的关系可计算出PA=$\sqrt{3}$OA=4$\sqrt{3}$,PO=2OA=8,由于∠O=60°,接着根据对称的性质得OP⊥AB,AD=BD,则可利用面积法计算出AD=2$\sqrt{3}$,于是得到AB=2AD=4$\sqrt{3}$;
(2)根据扇形的面积公式,利用阴影部分的面积=S△OAP-S扇形AOC进行计算即可.
解答 解:(1)设AB交OP于D,![]()
∵PA为⊙O的切线,
∴OA⊥PA,
∴∠PAO=90°,
∵∠O=60°,PA=$\sqrt{3}$OA=4$\sqrt{3}$,PO=2OA=8,
∵点B与点A关于直线PO对称,
∴OP⊥AB,AD=BD,
∴AD=OAsin60°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
∴AB=2AD=4$\sqrt{3}$;
(2)阴影部分的面积=S△OAP-S扇形AOC
=$\frac{1}{2}$×4×4$\sqrt{3}$-$\frac{60•π•{4}^{2}}{360}$=8$\sqrt{3}$=8$\sqrt{3}$-$\frac{8}{3}$π.
点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径;运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了扇形面积公式.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 30° | 60° | |
| sin | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ |
| cos | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ |
| tan | $\frac{\sqrt{3}}{3}$ | $\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | EF=BC | B. | AC=DF | C. | ∠ACB=∠F | D. | ∠A=∠D |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com