精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′ E处,AD′ CE交于点F,若∠B=55°,∠DAE=20°,则∠FED′ 的大小为( )

A.20°B.30°

C.35°D.45°

【答案】B

【解析】

由平行四边形的性质得出∠D=B=55°,由折叠的性质得:∠D=D=55°,∠EAD=DAE=20°,由三角形的外角性质求出∠AEF=75°,与三角形内角和定理求出∠AED=105°,即可得出∠FED′的大小.

∵四边形ABCD是平行四边形,

∴∠D=B=55°,

由折叠的性质得:∠D=D=55°,∠EAD=DAE=20°,

∴∠AEF=D+DAE=55°+20°=75°,∠AED=180°-EAD-D=105°,

∴∠FED=105°-75°=30°;

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在某个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按分为四个等级,并依次用ABCD表示,根据调查结果统计的数据,绘制成了如下图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:

1)求本次调查的学生人数;

2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;

3)若该校共有学生1200人,试估计每周课外阅读时间不少于3小时的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020年全民抗疫期间,抗疫志士莫小贝购进一条生产线生产抗疫物质. 已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60. 由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让所有工人到供给站的距离总和最小;方案二:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和.

(1)若按照方案一建站,供给站距离甲平台多少米?

(2)若按照方案二建站,供给站距离甲平台多少米?

(3)(2)的条件下,若甲平台的工人数增加(),那么随着的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知C过菱形ABCD的三个顶点BAD,连结BD,过点AAEBD交射线CB于点E

1)求证:AEC的切线.

2)若半径为2,求图中线段AE、线段BE围成的部分的面积.

3)在(2)的条件下,在C上取点F,连结AF,使∠DAF15°,求点F到直线AD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,ACBCO的弦,ACB的平分线交OD,连接ADBD,已知AB6BC2

1)求AD的长度和四边形ACBD的面积;

2)证明:2AD2=AC2+BC2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点DDEACAC的延长线于点E

1)求证:DE是⊙O的切线;

2)如果∠BAC=60°AE=,求AC长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为

1)求袋子中白球的个数;(请通过列式或列方程解答)

2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,相切于点,直径交于点,弦交于点,则的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,图②分别是网上某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑杆、箱长、拉杆的长度都相等,即,点在线段上,点上,支杆

请根据以上信息,解决下列问题;

1)求的长度(结果保留根号);

2)求拉杆端点到水平滑杆的距离(结果保留到).

参考数据:

查看答案和解析>>

同步练习册答案