数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总练习册解析答案
分析 此题实际上求$\sqrt{{a}^{2}+{b}^{2}}$的值.设t=a2+b2,将原方程转化为关于t的一元二次方程t(t-1)=12,通过解方程求得t的值即可.
解答 解:设t=a2+b2,则由原方程,得t(t-1)=12,整理,得(t-4)(t+3)=0,解得t=4或t=-3(舍去).则a2+b2=4,∵a,b是一个直角三角形两条直角边的长,∴这个直角三角形的斜边长为$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{4}$=2.故答案是:2.
点评 此题考查了换元法解一元二次方程,以及勾股定理,熟练运用勾股定理是解本题的关键.
科目:初中数学 来源: 题型:解答题
科目:初中数学 来源: 题型:选择题
科目:初中数学 来源: 题型:填空题
国际学校优选 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区