精英家教网 > 初中数学 > 题目详情

【题目】在等腰直角三角形ABC中,∠ACB90°,ACBC,DAB边上的中点,RtEFG的直角顶点EAB边上移动.

(1)如图1,若点D与点E重合且EGACDFBC,分别交ACBC于点MN

易证EMEN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EMEN的长度还相等吗?若相等请给出证明,不相等请说明理由;

(2)将图1中的RtEGF绕点O顺时针旋转角度α(0α45). 如图2,在旋转过程中,当∠MDC15时,连接MN,若ACBC2,请求出写出线段MN的长;

(3) 图3, 旋转后,若RtEGF的顶点E在线段AB上移动(不与点DB重合),当AB3AE时,线段EMEN的数量关系是________;当ABm·AE时,线段EMEN的数量关系是__________.

【答案】 NE2ME EN=(m1)ME

【解析】分析:(1)易证△CDM≌△BDN,从而得出DMDNEMEN

(2)DPACP,通过解直角三角形DPM得出DM=,由△MND为等腰直角三角形得出结论;

(3)过点EEPABAC于点P,则△AEP为等腰直角三角形,通过证明△PME∽△BNE得到EN2EM由此规律可知,当ABm·AE时,EN=(m1ME

详解:(1EMEN;原因如下:

∵∠ACB90° ACBC DAB边上的中点

DCDBACD=∠B45° ∠CDB90°

∴∠CDF+∠FDB90°

∵∠GDF90°∴∠GDC+∠CDF90°∴∠CDM=∠BDN

在△CDM和△BDN

MCD=∠B,DCDB,CDM=∠BDN,

∴△CDM≌△BDNDMDNEMEN

(2)作DPACP,则

CDP45° CPDPAP1

∵∠CDG15° ∴∠MDP30°

cosMDP

DMDMDN,

∵△MND为等腰直角三角形

MN

(3)NE2ME,EN=(m1)ME

证明:如图3,过点EEPABAC于点P

则△AEP为等腰直角三角形,∠PEB90°

AEPEAB3AEBE2AEBE2PE

又∵∠MEP+∠PEN90°

PEN+∠NEB90°

∴∠MEP=∠NEB

又∵∠MPE=∠B45°

∴△PME∽△BNE

,即EN2EM

由此规律可知,当ABm·AE时,EN=(m1ME

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是(  )

A. 504m2 B. m2 C. m2 D. 1009m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一次函数的图象与反比例函数的图象交于MN两点,过点MMCy轴于点C,且CM1,过点NNDx轴于点D,且DN1,已知点Px轴(除原点O外)上一点.

1)直接写出MN的坐标及k的值;

2)将线段CP绕点P按逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出点Q的坐标;如果不能,请说明理由;

3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以PSMN四个点为顶点的四边形是平行四边形?若存在,请直接写出所有符合题意的点S的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某通讯运营商的手机上网流量资费标准推出了三种优惠方案:

方案A:按流量计费,0.1元/M

方案B:20元流量套餐包月,包含500M流量,如果超过500M,超过部分另外计费(见图象),如果用到1000M时,超过1000M的流量不再收费;

方案C:120元包月,无限制使用.

x表示每月上网流量(单位:M),y表示每月的流量费用(单位:元),方案B和方案C对应的y关于x的函数图象如图所示,请解决以下问题:

(1)写出方案A的函数解析式,并在图中画出其图象;

(2)直接写出方案B的函数解析式;

(3)若甲乙两人每月使用流量分别在300600M8001200M之间,请你分别给出甲乙二人经济合理的选择方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.

(1)你认为图②中的阴影部分的正方形的边长等于_______________.

(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.

方法①___________________. 方法②________________.

(3)观察图②,你能写出这三个代数式之间的等量关系吗?

(4)利用以上等量关系,解决问题:已知a+b=3,ab=-2,的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】发现

如图1,在有一个“凹角∠A1A2A3n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+A3+A4+A5+A6+……+An﹣(n4)×180°.

验证

1)如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+C+D

2)证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+C+D+E+F360°.

延伸

3)如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+A2A3A4=∠A1+A4+A5+A6……+An﹣(n  )×180°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中一次函数yaxb(a0)的图象与反比例函数y (k0)的图象交于AB两点x轴交于点C过点AAHx轴于点HO是线段CH的中点AC4 cosACHB的坐标为(4n)

(1)求该反比例函数和一次函数的解析式;

(2)求△BCH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形,长,宽 分别是上运动的两点。若自点出发,以的速度沿方向运动,同时, 自点出发以的速度沿方向运动,则经过____________秒,以为顶点的三角形与相似

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y

(1)计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.

(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy6,则小明胜;若x、y满足xy6,则小红胜,这个游戏公平吗?请说明理由;若不公平,请写出公平的游戏规则.

查看答案和解析>>

同步练习册答案