精英家教网 > 初中数学 > 题目详情

【题目】某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A,B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果保留根号)

【答案】解:如图,过点C作CD⊥AB交AB的延长线于D点.

∵探测线与地面的夹角为30°和60°,

∴∠CAD=30°∠CBD=60°,

根据三角形的外角定理,得∠BCA=∠CBD﹣∠CAD=30°,

即∠BCA=∠CAD=30°,

∴BC=AB=3米,

在Rt△BDC中,CD=BCsin60°=3× = 米.

答:生命所在点C的深度约为 米.


【解析】过点C作CD⊥AB交AB的延长线于D点,依据题意可得到∠CAD=30°,∠CBD=60°,接下来,依据三角形的外角的性质可求得∠BCA=30°,则BC=AB=3米,最后,在Rt△BDC中利用特殊锐角三角函数值求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装360辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练和2名新工人每月可安装12辆电动汽车;2名熟练工和3名新工人每月可安装21辆电动汽车.

(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?

(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?

(3)(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W()尽可能的少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和直线BC相交于点B,连接AC,点DEH分别在ABACBC上,连接DEDHFDH上一点,已知∠1+3=180°.

(1)求证:CEF=EAD

(2)DH平分∠BDE,∠2=求∠3的度数(用含的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学校组织的游艺会上,投飞标游艺区游戏区规则如下,如图投到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况如图所示.

(1)求掷中A区、B区一次各得多少分?

(2)依此方法计算小明的得分为多少分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC8AB6,则线段CE的长度是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了对某市区全民阅读状况进行调查和评估,有关部门随机抽取了部分市民进行每天阅读时间情况的调查,并根据调查结果制做了如下尚不完整的频数分布表(被调查者每天的阅读时间均在0120分钟之内)

阅读时间x(分钟)

0≤x30

30≤x60

60≤x90

90≤x≤120

频数

450

400

m

50

频率

0.45

0.4

0.1

n

1)被调查的市民人数为多少,表格中,mn为多少;

2)补全频数分布直方图;

3)某市区目前的常住人口约有118万人,请估计该市区每天阅读时间在60120分钟的市民大约有多少万人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在网格中建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点顺时针方向旋转180°后得到四边形A1B1C1D1

(1)写出点D1的坐标
(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2 , 若点D2(4,5),画出平移后的图形;
(3)求点D旋转到点D1所经过的路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读题.

材料一若一个整数m能表示成a2-b2(a,b为整数)的形式,则称这个数为完美数”.例如,3=22-12,9=32-02,12=42-223,9,12都是完美数”;再如,M=x2+2xy=(x+y)2-y2,(x,y是整数),所以M也是完美数”.

材料二:任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q).如果p×qn的所有这种分解中两因数之差的绝对值最小,我们就称p×qn的最佳分解,并且规定F(n)=.例如18=1×18=2×9=3×6,这三种分解中36的差的绝对值最小所以就有F(18)=.请解答下列问题:

(1)8______(填写不是)一个完美数,F(8)= ______.

(2)如果mn都是完美数”,试说明mn也是完美数”.

(3)若一个两位数n的十位数和个位数分别为x,y(1≤x≤9),n完美数x+y能够被8整除,求F(n)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.

(1)观察图象,直接写出日销售量的最大值;

(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;

(3)试比较第10天与第12天的销售金额哪天多?

查看答案和解析>>

同步练习册答案