精英家教网 > 初中数学 > 题目详情

【题目】如图:

(1)找出直线DC,AC被直线BE所截形成的同旁内角;

(2)指出∠DEF与∠CFE是由哪两条直线被哪一条直线所截形成的什么角;

(3)试找出图中与∠DAC是同位角的所有角.

【答案】(1)∠FBC和∠CFB,∠DFB和∠FBA是直线DC,AC被直线BE所截形成的同旁内角.(2)∠DEF与∠CFE是由直线AG,DF被直线EF所截形成的内错角.(3)∠DAC的同位角:∠EBH,∠DCH,∠EDF,∠GEF.

【解析】试题分析:(1)根据同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角

分别进行分析即可

(2)根据∠DEF与∠CFE的边以及位置特征即可做出判断;

(3)根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析.

试题解析:(1)∠FBC和∠CFB,∠DFB和∠FBA是直线DC,AC被直线BE所截形成的同旁内角

(2)∠DEF与∠CFE是由直线AG,DF被直线EF所截形成的内错角

(3)∠DAC的同位角:∠EBH,∠DCH,∠EDF,∠GEF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2017年国内生产总值达到827 000亿元,稳居世界第二.将数827 000用科学记数法表示为(  )

A.82.×104B.8.27×105C.0.27×106D.8.7×106

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:8﹣2x2= .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种蔬菜按品质分成三个等级销售,销售情况如表:

等级

单价(元/千克)

销售量(千克)

一等

5.0

20

二等

4.5

40

三等

4.0

40

则售出蔬菜的平均单价为 元/千克.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结 合.研究数轴我们发现了许多重要的规律:若数轴上点 A、点 B 表示的数分别为 a、b,则AB 两点之间的距离 AB= ,线段 AB 的中点表示的数为 .

【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点 A 出发, 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒 2个单 位长度的速度向左匀速运动,设运动时间为t(t>0).

【综合运用】(1) 填空:

①A、B两点之间的距离AB=__________,线段AB的中点表示的数为_______

②用含t的代数式表示:t秒后,点P表示的数为_______;点Q表示的数为_____.

(2) 求当t为何值时,P、Q 两点相遇,并写出相遇点所表示的数;

(3)求当t为何值时,PQ=AB

(4)若点M为PA的中点,点N为PB的中点,点 P在运动过程中,线段MN的长度是否发 生变化?若变化,请说明理由;若不变,请求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABC,在平面上找一点P,使得△PAB、△PBC和△PAC都是等腰三角形,这样的点P的个数是(
A.1
B.4
C.7
D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果将电影票上“8 5 简记为(85),那么“7 6 可表示为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推进节能减排,发展低碳经济,某市“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额-生产成本-节电投资)

(1)直接写出y与x之间的函数关系式;

(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?

(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,OEOD分别平分∠AOC和∠BOC.

(1)如果∠AOB=900BOC=400,求∠DOE的度数;

(2)如果∠AOB=αBOC=β αβ均为锐角α>β,其他条件不变,求∠DOE

(3)(1)(2)的结果中,你发现了什么规律.

查看答案和解析>>

同步练习册答案