精英家教网 > 初中数学 > 题目详情

【题目】△ABD中,AB=BD,点C在直线BD上,BD=3CD,cos∠CAD= ,AD=6,则AC=

【答案】6或
【解析】解:分两种情况:①如图所示,当点C在线段BD上时,过B作BF⊥AD于F,过D作DE⊥AD交AC的延长线于E,

Rt△ADE中,cos∠CAD= = ,即 =

∴AE= , 分两种情况:①如图所示,当点C在线段BD上时,过B作BF⊥AD于F,过D作DE⊥AD交AC的延长线于E,在Rt△ADE中根据锐角三角函数的定义得出AE的长,

∵BD=3CD,DE∥BF,

= =

设CE=x,则CG=2x,GE=3x,

∵AB=BD,BF⊥AD,

∴AF=FD,

∴AG=GE=3x,

∴AE=6x,AC=5x,

∴AC= AE= × =6;②如图所示,当C在BD的延长线上时,过B作BF⊥AD于F,过C作CE⊥AD交AD的延长线于E,

∵AB=BD,BF⊥AD,

∴AF=FD= AD=3,

∵CE∥BF,BD=3CD,

= =

= ,即DE=1,

∴AE=6+1=7,

∵Rt△ACE中,cos∠CAD=

= ,即 =

∴AC=

综上所述,AC的长为6或

所以答案是:6或

【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对平行线分线段成比例的理解,了解三条平行线截两条直线,所得的对应线段成比例.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,ABC=90°AB=BC,过ABC的顶点B作直线,且点A的距离为2,点C的距离为3,则AC的长是(

A. B. C. D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与y轴交于点C.

(1)求抛物线y=ax2+bx+2的函数表达式;
(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;
(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2 , 若S=2,则S1+S2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:

卖出价格x(/)

50

51

52

53

销售量P()

500

490

480

470

Px的函数关系式为________,当卖出价格为60元时,销售量为_______件.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣ ,﹣ }=;若min{(x﹣1)2 , x2}=1,则x=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养 天的总成本为 万元;放养 天的总成本为 万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是 万元,收购成本为 万元,求 的值;
(2)设这批淡水鱼放养 天后的质量为 ),销售单价为 元/ .根据以往经验可知: 的函数关系为 的函数关系如图所示.

①分别求出当 时, 的函数关系式;
②设将这批淡水鱼放养 天后一次性出售所得利润为 元,求当 为何值时, 最大?并求出最大值.(利润=销售总额-总成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面文字,然后回答问题.

大家知道是无理数,而无理数是无限不循环小数,所以的小数部分我们不可能全部写出来,由于的整数部分是1,将 减去它的整数部分,差就是它的小数部分,因此的小数部分可用1表示.

由此我们得到一个真命题:如果x+y,其中x是整数,且0y1,那么x1y1

请解答下列问题:

1)如果a+b,其中a是整数,且0b1,那么a   b   

2)如果﹣c+d,其中c是整数,且0d1,那么c   d   

3)已知2+m+n,其中m是整數,且0n1,求|mn|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=30°,OP平分∠AOB,PD⊥OBD,PC∥OBOAC,若PC=10,则PD=________

查看答案和解析>>

同步练习册答案