精英家教网 > 初中数学 > 题目详情
8.如图(1),在△ABC中,∠BAC=90°,AB=AC,在△ABC内部做△CED,使∠CED=90°,E在BC上,D在AC上,分别以AB,AD为邻边作平行四边形ABFD,连接AF、AE、EF.

(1)证明:AE=EF;
(2)判断线段AF,AE的数量关系,并证明你的结论;
(3)在图(1)的基础上,将△CED绕点C逆时针旋转,请判断(2)问中的结论是否成立?若成立,结合图(2)写出证明过程;若不成立,请说明理由.

分析 (1)根据△ABC是等腰直角三角形,△CDE是等腰直角三角形,四边形ABFD是平行四边形,判定△ACE≌△FDE(SAS),进而得出AE=EF;
(2)根据∠DFE+∠EAF+∠AFD=90°,即可得出△AEF是直角三角形,再根据AE=FE,得到△AEF是等腰直角三角形,进而得到AF=$\sqrt{2}$AE;
(3)延长FD交AC于K,先证明△EDF≌△ECA(SAS),再证明△AEF是等腰直角三角形即可得出结论.

解答 解:(1)如图1,∵△ABC中,∠BAC=90°,AB=AC,
∴△ABC是等腰直角三角形,
∵∠CED=90°,E在BC上,D在AC上,
∴△CDE是等腰直角三角形,
∴CE=CD,
∵四边形ABFD是平行四边形,
∴DF=AB=AC,
∵平行四边形ABFD中,AB∥DF,
∴∠CDF=∠CAB=90°,
∵∠C=∠CDE=45°,
∴∠FDE=45°=∠C,
在△ACE和△FDE中,
$\left\{\begin{array}{l}{AC=FD}\\{∠C=∠FDE}\\{CE=DE}\end{array}\right.$,
∴△ACE≌△FDE(SAS),
∴AE=EF;

(2)AF=$\sqrt{2}$AE.
证明:如图1,∵AB∥DF,∠BAD=90°,
∴∠ADF=90°,
∴Rt△ADF中,∠DAE+∠EAF+∠AFD=90°,
∵△ACE≌△FDE,
∴∠DAE=∠DFE,
∴∠DFE+∠EAF+∠AFD=90°,
即△AEF是直角三角形,
又∵AE=FE,
∴△AEF是等腰直角三角形,
∴AF=$\sqrt{2}$AE;

(3)AF=$\sqrt{2}$AE仍成立.
证明:如图2,延长FD交AC于K.
∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,
∠ACE=(90°-∠KDC)+∠DCE=135°-∠KDC,
∴∠EDF=∠ACE,
∵DF=AB,AB=AC,
∴DF=AC,
在△EDF和△ECA中,
$\left\{\begin{array}{l}{DF=AC}\\{∠EDF=∠ACE}\\{DE=CE}\end{array}\right.$,
∴△EDF≌△ECA(SAS),
∴EF=EA,∠FED=∠AEC,
∴∠FEA=∠DEC=90°,
∴△AEF是等腰直角三角形,
∴AF=$\sqrt{2}$AE.

点评 本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质等知识的综合应用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.若$\sqrt{a+b+5}$+|2a-b+1|=0,则(b-a)2016=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:正方形纸片ABCD的边长为4,将该正方形纸片沿EF折叠(E,F分别在AB,CD边上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P.
(1)如图①,连接PE,若M是AD边的中点.①图中与△PMD相似的三角形是△AME∽△DPM,△MPD∽△FPN,△EMP∽△MDP;
②求△PMD的周长.
(2)如图②,随着落点M在AD边上移动(点M不与A、D重合),△PDM的周长是否发生变化?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=43°,则∠P的度数为94度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.己知二次函数y=ax2-ax-x(a≠0)
(1)若对称轴是直线x=1
①求二次函数的解析式;
②二次函数y=ax2-ax-x-t(t为实数)图象的顶点在x轴上,求t的值;
(2)把抛物线k1:y=ax2-ax-x向上平移1个单位得到新的抛物线k2,若a<0,求k2落在x轴上方的部分对应的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.用图象法解不等式:2x+1>-$\frac{1}{2}$x+6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:
探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是$\sqrt{3}$+1;如图2,当a=60°时,半圆O与射线AB相切;
(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.
(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=$\frac{R-m}{R}$(用含有R、m的代数式表示)
拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是90°<α≤120°,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一辆汽车开往距离出发地180km的目的地,出发后第一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,结果比原计划提前40min到达目的地.原计划的行驶速度是60km/h.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
平均数(cm)185180185180
方差3.63.67.48.1
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案