精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,ABy轴,且点B的纵坐标为1,双曲线y经过点B

(1)a的值及双曲线y的解析式;

(2)经过点B的直线与双曲线y的另一个交点为点C,且△ABC的面积为

①求直线BC的解析式;

②过点BBDx轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.

【答案】(1)y=(2)①y=x-1②(﹣1,﹣2)或(,-

【解析】

试题(1)根据一次函数图象上点的坐标特征可得到解得a=2,则A2-)),再确定点B的坐标为(21),然后把B点坐标代入中求出m的值即可得到反比例函数的解析式;

2过点CCE⊥AB于点E,如图5.,根据三角形面积公式得到解得CE=3,点C的横坐标为-1.

C在双曲线上,则点C的坐标为(-1-2),再利用待定系数法求直线BC的解析式;先确定D-11),根据直线BC解析式的特征可得直线BCx轴的夹角为45°,而BD∥x轴,于是得到∠DBC=45°,根据正方形的判定方法,只有△PBD为等腰直角三角形时,以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,分类讨论:若∠BPD=90°,则点PBD的垂直平分线上,易得此时P-);若∠BDP=90°,利用PD∥y轴,易得此时P-1-2).

试题解析:(1A在直线上,

.

.…………………………1

∵AB∥y轴,且点B的纵坐标为1

B的坐标为(2,1.

双曲线经过点B2,1),

,即.

反比例函数的解析式为.

2过点CCE⊥AB于点E,如图.

.

∴CE="3."

C的横坐标为-1.

C在双曲线上,

C的坐标为(-1-2.

设直线BC的解析式为

解得

直线BC的解析式为.

-1-2)或.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图双曲线(x>0)与直线EF交于点A,点B,且AE=AB=BF,连结AOBO,它们分别与双曲线(x>0)交于点C,点D,则:

(1)ABCD的位置关系是__________

(2)四边形ABDC的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)。

(1)以O点为位似中心在y轴的左侧将OBC放大到两倍画出图形。

(2)写出B、C两点的对应点B、C的坐标;

(3)如果OBC内部一点M的坐标为(x,y),写出M的对应点M的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,等腰直角三角形AOB在如图所示的位置,点B的横坐标为2,将△AOB绕点O按逆时针方向旋转90°,得到△AOB′,则点A′的坐标为(  )

A. (1,1) B.

C. (﹣1,1) D. (﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为

)请直接写出袋子中白球的个数.

)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,海中有一小岛P,在距小岛P海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线 y=ax2﹣5ax+c x 轴于点 A,点 A 的坐标为(4,0).

(1)用含 a 的代数式表示 c

(2) a时,求 x 为何值时 y 取得最小值,并求出 y 的最小值.

(3) a时,求 0≤x≤6 y 的取值范围.

(4)已知点 B 的坐标为(0,3),当抛物线的顶点落在△AOB 外接圆内部时,直接写出 a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块直角三角形纸片,两直角边AB6BC8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

同步练习册答案