【题目】已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的长.
【答案】(1)见解析;(2).
【解析】
(1)由AD=AC可以得到∠ADC=∠ACD,利用D是BC边上的中点,DE⊥BC可以得到∠EBC=∠ECB,再利用相似三角形的判定,就可以证明题目结论;
(2)利用相似三角形的性质就可以求出三角形ABC的面积,然后利用面积公式就求出了DE的长.
(1)证明:∵AD=AC,
∴∠ADC=∠ACD.
∵D是BC边上的中点,DE⊥BC,
∴EB=EC,
∴∠EBC=∠ECB.
∴△ABC∽△FCD;
(2)解:过A作AM⊥CD,垂足为M.
∵△ABC∽△FCD,BC=2CD,
∴.
∵S△FCD=5,
∴S△ABC=20.
又∵S△ABC=×BC×AM,BC=10,
∴AM=4.
又DM=CM=CD,DE∥AM,
∴DE:AM=BD:BM=,
∴DE= .
科目:初中数学 来源: 题型:
【题目】已知∠ACB=90°,AC=2,CB=4.点P为线段CB上一动点,连接AP,△APC与△APC′关于直线AP对称,其中点C的对称点为点C′.直线m过点A且平行于CB
(1)如图①:连接AB,当点C落在线段AB上时,求BC′的长;
(2)如图②:当PC=BC时,延长PC′交直线m于点D,求△ADC′面积;
(3)在(2)的条件下,连接BC′,直接写出线段BC′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点P是半径为5cm的⊙O外的一点,OP= 13cm,PT切⊙O于T点,过点P作PB(PB>PA),设PA= x,PB= y。
(1)求y与x的函数解析式,并确定自变量x的取值范围;
(2)这个函数有最大值吗?若有求出此时△PBT的面积,若没有,请说明理由;
(3)是否存在这样的PB,使得,若存在,请求出PA的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为( )
A. -3 B. -4 C. - D. -2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正三角形A1B1C1的面积为1,取ΔA1B1C1各边的中点A2、B2、C2,作第二个正三角形A2B2C2,再取ΔA2B2C2各边的中点A3、B3、C3,作第三个正三角形A3B3C3,……,则第4个正三角形A4B4C4的面积是__________;第n个正三角形AnBnCn的面积是_____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E、F分别在边BC、DC上,AE、AF分别交BD于点M、N,连接CN、EN,且CN=EN.下列结论:①AN=EN,AN⊥EN;②BE+DF=EF;③;④图中只有4对相似三角形,其中正确结论的个数是( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.
(1)求抛物线的解析式;
(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;
(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF:DC=1:4,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为10,求BG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com