【题目】如图,,,都是等腰直角三角形,点、、都在函数的图象上,斜边、、都在x轴上则点的坐标是______.
【答案】
【解析】
由于P1OA1是等腰直角三角形,可知直线OP1的解析式为y=x,将它与联立,求出方程组的解,得到点P1的坐标,则A1的横坐标是P1的横坐标的两倍,从而确定点A1的坐标;由于P1OA1,P2A1A2都是等腰直角三角形,则A1P2∥OP1,直线A1P2可看作是直线OP1向右平移OA1个单位长度得到的,因而得到直线A1P2的解析式,同样,将它与 联立,求出方程组的解,得到点P2的坐标,则P2的横坐标是线段A1A2的中点,从而确定点A2的坐标;依此类推,从而确定点A10的坐标.
解:
过作轴于,
易知是的中点,
.
可得的坐标为,
的解析式为:,
,的表达式一次项系数相等,
将代入,
,
的表达式是,
与联立,解得
仿上,.
,.
依此类推,点的坐标为
故点的坐标是.
故答案为:.
科目:初中数学 来源: 题型:
【题目】P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.
当的半径为1时.
在点、、中,的“特征点”是______;
点P在直线上,若点P为的“特征点”求b的取值范围;
的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件50元,售价为每件60元,每天可卖出190件;如果每件商品的售价每上涨1元,则每天少卖10件,设每件商品的售价上涨x元,每天的销售利润为y元.
(1)求y关于x的关系式;
(2)每件商品的售价定为多少元时,每天的利润恰为1980元?
(3)每件商品的售价定为多少元时,每天可获得最大利润?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.
请你根据以上数据,计算舍利塔的高度AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,,,对角线AC,BD交于点点P从点A出发,沿AD方向匀速运动,速度为;同时,点Q从点D出发,沿DC方向匀速运动,速度为;当一个点停止运动时,另一个点也停止运动连接PO并延长,交BC于点E,过点Q作,交BD于点设运动时间为,解答下列问题:
(1)当t为何值时,是等腰三角形;
(2)设五边形OECQF的面积为,试确定S与t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2>4ac;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③当y>0时,x的取值范围是﹣1<x≤3;④当x>0时,y随x增大而增大.⑤a>-c上述五个结论中正确的有_________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.
(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;
(2)求证:DF是⊙O的切线;
(3)求证:∠EDF=∠DAC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com