精英家教网 > 初中数学 > 题目详情

【题目】如图,是以为直径的的切线,为切点,平分,弦于点

1)求证:是等腰直角三角形;

2)求证:

3)求的值.

【答案】1)见解析;(2)见解析;(3.

【解析】

1)由切线的性质和圆周角定理可得∠ACB=ABM=90°,由角平分线的性质可得∠CAB=CBA=45°
2)通过证明EDO∽△ODC,可得,即可得结论;

3)连接BDADDO,作∠BAF=DBA,交BD于点F,由外角的性质可得∠CAB=CDB=45°=EDO+ODB=3ODB,可求∠ODB=15°=OBD,由直角三角形的性质可得BD=DF+BF=

AD+2AD,即可求tanACD的值.

证明:(1)∵是以为直径的的切线,

平分

是直径

是等腰直角三角形;

2)如图,连接

2)如图,连接,作,交于点

是直径

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC⊙O的一条弦,AP⊙O的切线。作BM=AB并与AP交于点M,延长MBAC于点E,交⊙O于点D,连接AD.

1)求证:AB=BE

2)若⊙O的半径R=5AB=6,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,AB均为格点.

(I).的长等于_________

(II).请用无刻度的直尺,在如图所示的网格中求作一点,使得以为底边的等腰三角形的面积等于,并简要说明点的位置是如何找到的(不要求证明)_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下材料,并按要求完成相应地任务:

莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,Rr分别为外接圆和内切圆的半径,OI分别为其外心和内心,则.

如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

下面是该定理的证明过程(部分):

延长AI⊙O于点D,过点I⊙O的直径MN,连接DMAN.

∵∠D=∠N∠DMI=∠NAI(同弧所对的圆周角相等)

∴△MDI∽△ANI

①,

如图2,在图1(隐去MDAN)的基础上作⊙O的直径DE,连接BEBDBIIF

∵DE⊙O的直径,∴∠DBE=90°

∵⊙IAB相切于点F∴∠AFI=90°

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所对圆周角相等)

∴△AIF∽△EDB

②,

任务:(1)观察发现: (用含Rd的代数式表示)

(2)请判断BDID的数量关系,并说明理由;

(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀)

平均分

方差

中位数

众数

合格率

优秀率

一班

7.2

2.11

7

6

92.5%

20%

二班

6.85

4.28

8

8

85%

10%

根据图表信息,回答问题:

(1)用方差推断, 班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些;

(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据公开报道,2017年全国教育经费总投入为42557亿元,比上年增长9.43%,其中投入在各学段的经费占比(即所占比例)如图,根据图中提供的信息解答下列问题.

1)在2017年全国教育经费总投入中,义务教育段的经费总投入应该是多少亿元?

22016年全国教育经费总投入约为多少亿元?(精确到0.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂制作两种手工艺品,每天每件获利比105元,获利30元的与获利240元的数量相等.

1)制作一件和一件分别获利多少元?

2)工厂安排65人制作两种手工艺品,每人每天制作21.现在在不增加工人的情况下,增加制作.已知每人每天可制作1(每人每天只能制作一种手工艺品),要求每天制作两种手工艺品的数量相等.设每天安排人制作人制作,写出之间的函数关系式.

3)在(1)(2)的条件下,每天制作不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知每件获利30元,求每天制作三种手工艺品可获得的总利润(元)的最大值及相应的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________

查看答案和解析>>

同步练习册答案