精英家教网 > 初中数学 > 题目详情

【题目】阅读以下材料,并按要求完成相应地任务:

莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,Rr分别为外接圆和内切圆的半径,OI分别为其外心和内心,则.

如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

下面是该定理的证明过程(部分):

延长AI⊙O于点D,过点I⊙O的直径MN,连接DMAN.

∵∠D=∠N∠DMI=∠NAI(同弧所对的圆周角相等)

∴△MDI∽△ANI

①,

如图2,在图1(隐去MDAN)的基础上作⊙O的直径DE,连接BEBDBIIF

∵DE⊙O的直径,∴∠DBE=90°

∵⊙IAB相切于点F∴∠AFI=90°

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所对圆周角相等)

∴△AIF∽△EDB

②,

任务:(1)观察发现: (用含Rd的代数式表示)

(2)请判断BDID的数量关系,并说明理由;

(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.

【答案】(1)R-d(2)BD=ID,理由见解析;(3)见解析;(4).

【解析】

(1)直接观察可得;

(2)由三角形内心的性质可得∠BAD=CAD,∠CBI=ABI,由圆周角定理可得∠DBC=CAD,再根据三角形外角的性质即可求得∠BID=DBI,继而可证得BD=ID

(3)应用(1)(2)结论即可;

(4)直接代入结论进行计算即可.

(1)OIN三点共线,

OI+INON

INONOIRd

故答案为:Rd

(2)BD=ID,理由如下:

I△ABC的内心,

∴∠BAD=∠CAD∠CBI=∠ABI

∵∠DBC=∠CAD∠BID=∠BAD+∠ABI∠DBI=∠DBC+∠CBI

∴∠BID=∠DBI

∴BD=ID

(3)(2)知:BD=ID

DE·IF=IM·IN

(4)(3)知:

R=5r=2代入得:

d>0

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点ABC是⊙O上的三个点,点DBC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=DCE②在∠ABC所对的弧上存在一点E,使得∠BAE=AEC③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC④在∠ABC所对的弧上任意取一点E(不与点A,C重合)DCE=ABO +AEO均成立.上述结论中,所有正确结论的序号是( )

A. ①②③ B. ①③④ C. ②④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax22ax

1)二次函数图象的对称轴是直线x   

2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;

3)若a0,对于二次函数图象上的两点Px1y1),Qx2y2),当tx1t+1x2≥3时,均满足y1y2,请结合函数图象,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 .(填写所有正确结论的序号)

【答案】①②③④.

【解析】

试题分析:△ABC是等边三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等边三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,

EF=AE,所以△AEF是等边三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF 可判定△ABE≌△ACF,故①正确.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四边形ABDF是平行四边形,所以DF=AB=BC,故②正确.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF 可判定△BCE≌△FDC,所以S△BCE=S△FDC即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正确.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以==又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正确.

考点:三角形综合题.

型】填空
束】
19

【题目】先化简,再求值:(a+1-)÷(),其中a=2+.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB两个顶点在x轴上方,点C的坐标是(10),以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,得到△A'B'C',设点B的对应点B'的横坐标为2,则点B的横坐标为(  )

A.1B.C.2D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点作直线的垂线,垂足为点,过点轴,垂足为点,过点,垂足为点,这样依次下去,得到一组线段,则线段的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AB=ACAC交⊙O于点EBC交⊙O于点DFCE的中点,连接DF.则下列结论错误的是

A.A=ABEB.

C.BD=DCD.DF是⊙O的切线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数xy的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,类似地,图2所示的算筹图我们可以表述为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴交于AB两点,OCAB于点CP是线段OC上的一个动点,连接AP,将线段AP绕点A逆时针旋转45°,得到线段AP',连接CP',则线段CP'的最小值为(  )

A.B.1C.D.

查看答案和解析>>

同步练习册答案