精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF= DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

【答案】
(1)证明:∵ABCD为正方形,

∴AD=AB=DC=BC,∠A=∠D=90°,

∵AE=ED,

∵DF= DC,

∴△ABE∽△DEF


(2)解:∵ABCD为正方形,

∴ED∥BG,

又∵DF= DC,正方形的边长为4,

∴ED=2,CG=6,

∴BG=BC+CG=10


【解析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得 ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG的长,即可求得BG的长.
【考点精析】关于本题考查的正方形的性质和平行线分线段成比例,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;三条平行线截两条直线,所得的对应线段成比例才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是 . (写出正确命题的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF= DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或化简
(1) +|﹣2|﹣4sin45°﹣( 1
(2)解方程 =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,若“摸出的球是黑球”为必然事件,求m的值;
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于 ,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,ADBC于点D,EAB边上任意一点,EFBC于点F,1=2.求证:DGAB.请把证明的过程填写完整.

证明:∵ADBC,EFBC(   ),

∴∠EFB=ADB=90°(垂直的定义)

EF      

∴∠1=      

又∵∠1=2(已知)

      

DGAB(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中 的长是cm(计算结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD和四边形EFBC均为正方形,点DEC上.如果线段AB的长为5,则△BDF的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】看图填空:

(1)过点________和点_______作直线;

(2)延长线段_________________,且使________=_________

(3)过点_________作直线_______的垂线;

(4)作射线_______,使_____平分________

查看答案和解析>>

同步练习册答案