【题目】在△ABC中,点D在边BC上,点E在线段AD上.
(1)若∠BAC=∠BED=2∠CED=α,
①若α=90°,AB=AC,过C作CF⊥AD于点F,求的值;
②若BD=3CD,求的值;
(2)AD为△ABC的角平分线,AE=ED=2,AC=5,tan∠BED=2,直接写出BE的长度.
【答案】(1)①2;②;(2)
【解析】
(1)①由题意先判定△ABC与△CEF都是等腰直角三角形,再判定△ABE≌△CAF(AAS),则可由全等三角形的性质及中线的定义可得答案;②过点C作CF∥BE,交AD的延长线于点F,在AD上取一点G,使得CG=CF,由两组角对应相等判定△ABE∽△CAG,再由CF∥BE判定△BED∽△CFD,由相似三角形的性质得两个比例等式,设CF=x,BE=3x,AE=y,则CG=EG=x,代入比例式化简计算可得答案.
(2)过点C作CF∥AD,交BA的延长线于F,延长BE交CF与G,利用等腰三角形的判定与性质进行推理,结合tan∠BED=2,得出AG的长;利用勾股数得出FG与CG的长;由DE∥CG得出比例式,计算可求得BE的长.
解:(1)①∵∠BAC=∠BED=2∠CED=α,
∴当α=90°,AB=AC时,△ABC与△CEF都是等腰直角三角形,
∴∠BAE+∠FAC=90°,∠ACF+∠FAC=90°,
∴∠BAE=∠AFC,
∴在△ABE与△CAF中,
∴△ABE≌△CAF(AAS),
∴AE=CF=EF,
∴BE=AF=2EF=2CF,
∴=2;
②如图,过点C作CF∥BE,交AD的延长线于点F,在AD上取一点G,使得CG=CF,
∵∠BAC=∠BED=2∠CED=α,
∴∠ABE=∠CAG,∠F=∠BED=α=∠CGF,
∴∠AEB=∠AGC,
∴△ABE∽△CAG,
∴=.
∵CF∥BE,
∴△BED∽△CFD,
∴==3.
设CF=x,BE=3x,AE=y,则CG=EG=x,
∴=.
解得:=,
∴=;
(2)如图,过点C作CF∥AD,交BA的延长线于F,延长BE交CF与G,
则∠BAD=∠F,∠DAC=∠ACF,
又∵AD为△ABC的角平分线,即∠BAD=∠DAC,
∴∠ACF=∠F,
∴AF=AC=5,
又AE=ED,
∴FG=CG,
∴AG⊥CF,
∴∠CAG=∠FAG,
∴AD⊥AG,
∵tan∠BED=2,
∴tan∠AEG=2,
∵AE=ED=2,
∴=2,
∴AG=2AE=4,
又∵AC=5,
∴FG=CG=3,
∵DE∥CG,
∴=,
∴=,
解得BE=4.
科目:初中数学 来源: 题型:
【题目】已知,如图,在边长为10的菱形ABCD中,cos∠B=,点E为BC边上的中点,点F为边AB边上一点,连接EF,过点B作EF的对称点B′,
(1)在图(1)中,用无刻度的直尺和圆规作出点B′(不写作法,保留痕迹);
(2)当△EFB′为等腰三角形时,求折痕EF的长度.
(3)当B′落在AD边的中垂线上时,求BF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是以为直径的上一点,过点作的切线交延长线于点,取中点,连接并延长交延长线于点.
(1)试判断与的位置关系,并说明理由;
(2)若,,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图平面直角坐标系中放置Rt△PEF,∠E=90°,EP=EF,△PEF绕点P(﹣1,﹣3)转动,PE、PF所在直线分别交y轴,x轴正半轴于点B(0,b),A(a,0),作矩形AOBC,双曲线y=(k>0)经过C点,当a,b均为正整数时,k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB 是⊙O的直径,∠DAB的角平分线AC交⊙O于点C,过点C作CD⊥AD于D,AB的延长线与DC的延长线相交于点P,∠ACB的角平分线CE交AB于点F、交⊙O于E.
(1)求证:PC与⊙O相切;
(2)求证:PC=PF;
(3)若AC=8,tan∠ABC=,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF结果精确到米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一段长为1000m的笔直道路AB上,甲、乙两名运动员分别从A,B两地出发进行往返跑训练.已知甲比乙先出发30秒钟,甲距A点的距离y/m与其出发的时间x/分钟的函数图象如图所示.乙的速度是200m/分钟,当乙到达A点后立即按原速返回B点.当两人第二次相遇时,乙跑的总路程是_____m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线过x轴上两点A(9,0),C(﹣3,0),且与y轴交于点B(0,﹣12).
(1)求抛物线的解析式;
(2)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.
求证:
(1)△ABC≌△DCB;
(2)DE·DC=AE·BD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com