【题目】阅读下面的文字,完成解答过程.
(1),,,则 .
并且用含有的式子表示发现的规律 .
(2)根据上述方法计算:
(3)根据(1),(2)的方法,我们可以猜测下列结论:
(其中均为正整数),
并计算
科目:初中数学 来源: 题型:
【题目】根据下列已知条件,分别指出两个图形中的等腰三角形,并利用第一个图证明结论。
(1)如图①,BD平分∠ABC,DE//AB
(2) 如图②,AD平分∠BAC , EC//AD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.
(1)求证:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一出租车一天下午以鼓楼为出发点在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:.
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:
组别 | 年龄段 | 频数(人数) |
第1组 | 5 | |
第2组 | ||
第3组 | 35 | |
第4组 | 20 | |
第5组 | 15 |
(1)请直接写出 , ,第3组人数在扇形统计图中所对应的圆心角是 度.
(2)请补全上面的频数分布直方图;
(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)有理数、、在数轴上的对应点如图所示,化简代数式:
(2)哈市某垃圾处理场一周处理生活垃圾任务为210吨,计划每天处理30吨,由于各种原因,实际每天处理量与计划相比有出入,某周七天的实际处理情况记录如下:
+6;-3;+4;-1;+2;-5;0
①垃圾场这一周实际处理生活垃圾是多少吨?
②若该垃圾场实行计量工资,每处理一吨生活垃圾给300元,同时又规定超额处理一吨垃圾另外奖100元,完不成任务的少处理一吨另外扣100元,那么该场工人这一周的工资总额是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为响应党中央号召,决定针对沿江两种主要污染源:生活污水和沿江工厂污染物排放,分别用甲方案和乙方案进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值平均为0.3.第一年有40家工厂用乙方案治理.经过三年治理,境内沿江水质明显改善.
(1)第一年40家工厂用乙方案治理一年降低的Q值为______;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都有增加,第三年新增的用乙方案.新治理的工厂数量是第二年新增的用乙方案新治理的工厂数量的1.5倍,第三年用乙方案治理所降低的Q值为57,设第二年新增的用乙方案新治理的工厂数量为m家,第三年新增的用乙方案新治理的工厂数量为n家.
①请列出关于m、n的方程组,并求解;
②该市生活污水用甲方案治理,第一年降低的Q值为20.5,从第二年起,每年所降低的Q值比上一年都增加a.若第三年用甲乙两种方案治理所降低的Q值比第二年用甲乙两种方案治理所降低的Q值大32,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC与△A'B'C在平面直角坐标系中的位置如图.
(1)分别写出B、B'的坐标:B______;B′______;
(2)若点P(a,b)是△ABC内部一点,则平移后△A'B'C内的对应点P′的坐标为______;
(3)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com