【题目】某体育用品商场采购员要到厂家批发购买篮球和排球共个,篮球个数不少于排球个数,付款总额不得超过元,已知两种球厂的批发价和商场的零售价如下表. 设该商场采购个篮球.
品名 | 厂家批发价/元/个 | 商场零售价/元/个 |
篮球 | ||
排球 |
(1)求该商场采购费用(单位:元)与(单位:个)的函数关系式,并写出自变最的取值范围:
(2)该商场把这个球全都以零售价售出,求商场能获得的最大利润;
(3)受原材料和工艺调整等因素影响,采购员实际采购时,低球的批发价上调了元/个,同时排球批发价下调了元/个.该体有用品商场决定不调整商场零售价,发现将个球全部卖出获得的最低利润是元,求的值.
【答案】(1),;(2)商场能获得的最大利润为元;(3)的值为.
【解析】
(1)设该商场采购个篮球,(100-x)个排球,根据表格写出函数关系式即可,根据题意列出关于x的不等式组,进一步确定自变量x的取值范围;
(2)设该商场获得利润元,先求出一个篮球及排球各自所获利润,再乘以数量即可,根据函数的变化情况即可确定最大利润;
(3)先列出利润W关于m的表达式,分情况讨论一次性系数的取值,根据最低利润确定m的值.
解:
设该商场获得利润元
随的增大而增大
当时,
即商场能获得的最大利润为元
①当时,即时,随的增大而增大
当时,
解得
不符合题意,舍去;
②当时,即,舍去
③当时,即,随的增大而减小
当时,
解得:,符合题意
即的值为.
科目:初中数学 来源: 题型:
【题目】如图所示,AB∥DE,AC∥DF,AC=DF下列条件中,不能判断△ABC≌△DEF的是( )
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们可用表示以为自变量的函数,如一次函数,可表示为,且,,定义:若存在实数,使成立,则称为的不动点,例如:,令,得,那么的不动点是1.
(1)已知函数,求的不动点.
(2)函数(是常数)的图象上存在不动点吗?若存在,请求出不动点;若不存在,请说明理由;
(3)已知函数(),当时,若一次函数与二次函数的交点为,即两点的横坐标是函数的不动点,且两点关于直线对称,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作⊙O的切线与AC交于点F.
(1)求证:EF=CF;
(2)若AE=8,cosA=,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、B、C是直线l上的三个点,线段AB=8厘米.
(1)若AB=2BC,求线段AC的长度;
(2)若点C是线段AB的中点,点P、Q是直线l上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、B同时出发在直线上运动,则经过多少秒时线段PQ的长为5厘来?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y﹣2与x成正比例,当x=2时,y=6.
(1)求y与x之间的函数解析式.
(2)在所给直角坐标系中画出函数图象.
(3)由函数图象直接写出当﹣2≤y≤2时,自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:点C在线段AB上,若BC=AC,则称点C是线段AB的一个圆周率点.
如图,已知点C是线段AB的一个靠近点A的圆周率点,AC=3.
(1)AB= ;(结果用含的代数式表示)
(2)若点D是线段AB的另一个圆周率点(不同于点C),则CD= ;
(3)若点E在线段AB的延长线上,且点B是线段CE的一个圆周率点.求出BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com