【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作⊙O的切线与AC交于点F.
(1)求证:EF=CF;
(2)若AE=8,cosA=,求DF的长.
【答案】(1)见解析;(2)2.
【解析】分析:(1)连接OD,DE,先说明OD∥AC,由切线的性质得∠ODF=90°,从而∠DFC=90°,再证明DE=DC,根据三线合一结论可证;
(2)连接AD,BE,先说明DF是△BCE的中位线,从而DF=BE,在Rt△ABE中,求出AB和BE的长,进而可求出DF的长.
详解:(1)证明:连接OD,DE,
∵AB=AC,
∴∠ABC=∠C,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODB=∠C,
∴OD∥AC,
∵DF与⊙O相切,
∴OD⊥DF,即∠ODF=90°,
∴∠DFC=90°,即DF⊥AC,
∵∠ABC+∠AED=180°,∠AED+∠DEC=180°,
∴∠DEC=∠ABD=∠C,
∴DE=DC,
∴EF=FC;
(2)连接AD,BE,
∵AB是⊙O的直径,
∴∠ADB=∠AEB=90°,
∵AB=AC,
∴BD=DC,
∴DF是△BCE的中位线,
∴DF=BE,
在Rt△ABE中,
∵cos∠BAE=,
∴AB=,
根据勾股定理可得:BE=,
∴DF=.
科目:初中数学 来源: 题型:
【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟) | 里程数(公里) | 车费(元) | |
小明 | 8 | 8 | 12 |
小刚 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD内找一点O,使它到四边形四个顶点的距离之和OA+OB+OC+OD最小,正确的作法是连接AC、BD交于点O,则点O就是要找的点,请你用所学过的数学知识解释这一道理__________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段AB,点C在直线AB上,D为线段BC的中点.
(1)若AB=8 ,AC=2,求线段CD的长.
(2)若点E是线段AC的中点,直接写出线段DE和AB的数量关系是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体育用品商场采购员要到厂家批发购买篮球和排球共个,篮球个数不少于排球个数,付款总额不得超过元,已知两种球厂的批发价和商场的零售价如下表. 设该商场采购个篮球.
品名 | 厂家批发价/元/个 | 商场零售价/元/个 |
篮球 | ||
排球 |
(1)求该商场采购费用(单位:元)与(单位:个)的函数关系式,并写出自变最的取值范围:
(2)该商场把这个球全都以零售价售出,求商场能获得的最大利润;
(3)受原材料和工艺调整等因素影响,采购员实际采购时,低球的批发价上调了元/个,同时排球批发价下调了元/个.该体有用品商场决定不调整商场零售价,发现将个球全部卖出获得的最低利润是元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,矩形OABC放置于平面直角坐标系中,点O与原点重合,点A在x轴正半轴上,点C在y轴正半轴上,点B的坐标为(6,3),点D是边BC上的一动点,连接OD,作点C关于直线OD的对称点C′.
(1)若点C、C′、A在一直线上时,求点D的坐标;
(2)若点C′到矩形两对边所在直线距离之比为1:2时,求点C′的坐标;
(3)若连接BC′,则线段BC′的长度范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形 AEF 的顶点 E 在等腰直角三角形 ABC 的边 BC上.AB 的延长线交 EF 于 D 点,其中∠AEF=∠ABC=90°.
(1)求证:
(2)若 E 为 BC 的中点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com