精英家教网 > 初中数学 > 题目详情
7.(1)计算:$(\sqrt{2}-1)^{2}+\sqrt{8}-|-1|$                  
(2)解方程:x2-5x+6=0.

分析 (1)首先化简二次根式以及去绝对值进而合并求出答案;
(2)直接利用因式分解法解方程求出答案.

解答 解:(1)$(\sqrt{2}-1)^{2}+\sqrt{8}-|-1|$           
=2+1-2$\sqrt{2}$+2$\sqrt{2}$-1
=2;
       
(2)x2-5x+6=0
(x-3)(x-2)=0,
解得:x1=3,x2=2.

点评 此题主要考查了二次根式的混合运算以及一元二次方程的解法,正确化简二次根式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.已知:如图在平面直角坐标系xOy中,矩形OABC的边OA在y轴的负半轴上,OC在x轴的正半轴上,OA=2,OC=3,过原点O作∠AOC的平分线交线段AB于点D,连接DC,过点D作DE⊥DC,交线段OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)如图2将∠EDC绕点D按逆时针方向旋转后,角的一边与y轴的负半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为$\frac{6}{5}$,求证:EF=2GO;
(3)对于(2)中的点G,在位于第四象限内的该跑物像上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,某登山运动员从营地A沿坡度为1:$\sqrt{3}$的斜坡AB到达山顶B,如果AB=1000米,则他实际上升了500米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.今年以来,国务院连续发布了《关于加快构建大众创业万众创新支撑平台的指导意见》等一系列支持性政策,各地政府高度重视、积极响应,中国掀起了大众创业万众创新的新浪潮.某创新公司生产营销A、B两种新产品,根据市场调研,发现如下信息:
信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系y=ax2+bx,当x=1时,y=7;当x=2时,y=12.
信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系y=2x.
根据以上信息,解答下列问题:
(1)求a,b的值;
(2)该公司准备生产营销A、B两种产品共10吨,请设计一个生产方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的是(  )
A.∠E=∠BB.ED=BCC.AB=EFD.AF=CD

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.抛物线y=2x2-4x+1的对称轴为直线x=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:$\sqrt{\frac{3}{2}}$$÷\sqrt{\frac{1}{12}}$$÷\sqrt{1\frac{1}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图:已知抛物线y=-x2+bx+9-b2(b为常数)经过坐标原点O,且与x轴交于另一点A.其顶点M在第一象限.点B(1,n)在这条抛物线上.
(1)求B点的坐标;
(2)点P在线段OA上,从O点出发向A点运动,过P点作x轴的垂线,与直线OB交于点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动).当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;
(3)设点F是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点F作x轴的平行线交该抛物线于另一点G,再作FQ⊥x轴于点Q.GN⊥x轴于点N.求矩形FQNG的周长的最大值,并写出此时点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)解不等式$x≤3-\frac{1}{2}x<5$
(2)解不等式组$\left\{{\begin{array}{l}{\frac{x-3}{2}+3≥x+1}\\{1-3({x-1})<8-x}\end{array}}\right.$,并写出该不等式组的整数解.

查看答案和解析>>

同步练习册答案