16£®Èçͼ£ºÒÑÖªÅ×ÎïÏßy=-x2+bx+9-b2£¨bΪ³£Êý£©¾­¹ý×ø±êÔ­µãO£¬ÇÒÓëxÖá½»ÓÚÁíÒ»µãA£®Æä¶¥µãMÔÚµÚÒ»ÏóÏÞ£®µãB£¨1£¬n£©ÔÚÕâÌõÅ×ÎïÏßÉÏ£®
£¨1£©ÇóBµãµÄ×ø±ê£»
£¨2£©µãPÔÚÏß¶ÎOAÉÏ£¬´ÓOµã³ö·¢ÏòAµãÔ˶¯£¬¹ýPµã×÷xÖáµÄ´¹Ïߣ¬ÓëÖ±ÏßOB½»ÓÚµãE£¬ÑÓ³¤PEµ½µãD£¬Ê¹µÃED=PE£¬ÒÔPDΪб±ß£¬ÔÚPDÓÒ²à×÷µÈÑüÖ±½ÇÈý½ÇÐÎPCD£¨µ±PµãÔ˶¯Ê±£¬Cµã¡¢DµãÒ²ËæÖ®Ô˶¯£©£®µ±µÈÑüÖ±½ÇÈý½ÇÐÎPCDµÄ¶¥µãCÂäÔÚ´ËÅ×ÎïÏßÉÏʱ£¬ÇóOPµÄ³¤£»
£¨3£©ÉèµãFÊǸÃÅ×ÎïÏßÉÏλÓÚxÖáÉÏ·½£¬ÇÒÔÚÆä¶Ô³ÆÖá×ó²àµÄÒ»¸ö¶¯µã£»¹ýµãF×÷xÖáµÄƽÐÐÏß½»¸ÃÅ×ÎïÏßÓÚÁíÒ»µãG£¬ÔÙ×÷FQ¡ÍxÖáÓÚµãQ£®GN¡ÍxÖáÓÚµãN£®Çó¾ØÐÎFQNGµÄÖܳ¤µÄ×î´óÖµ£¬²¢Ð´³ö´ËʱµãFµÄ×ø±ê£®

·ÖÎö £¨1£©ÓÉÅ×ÎïÏßy=-x2+bx+9-b2£¨bΪ³£Êý£©¾­¹ý×ø±êÔ­µãO£¬¿ÉµÃ³ö¹ØÓÚbµÄÒ»Ôª¶þ´Î·½³Ì£¬½â·½³Ì¿ÉµÃ³öb=¡À3£¬ÔÙÓÉÅ×ÎïÏߵĶ¥µãÔÚµÚÒ»ÏóÏÞ£¬¿ÉÈ·¶¨bµÄֵΪ3£¬Óɴ˿ɵóöÅ×ÎïÏߵĽâÎöʽ£¬½«x=1´úÈëÅ×ÎïÏß½âÎöʽ¼´¿ÉµÃ³öµãBµÄ×ø±ê£»
£¨2£©¸ù¾ÝµãBµÄ×ø±ê¿ÉµÃ³öÖ±ÏßOBµÄ½âÎöʽ£¬ÉèµãPµÄ×ø±êΪ£¨m£¬0£©£¬ÔòµãEµÄ×ø±êΪ£¨m£¬2m£©£¬ÓɵÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʿɵóöµãCµÄ×ø±êΪ£¨3m£¬2m£©£¬½«Æä´úÈëÅ×ÎïÏß½âÎöʽ¿ÉÇó³ömµÄÖµ£¬Óɴ˿ɵóöOPµÄ³¤£»
£¨3£©ÉèµãFµÄ×ø±êΪ£¨n£¬-n2+3n£©£¨0£¼n£¼$\frac{3}{2}$£©£¬ÔòGµã×ø±êΪ£¨3-n£¬-n2+3n£©£¬QµãµÄ×ø±êΪ£¨n£¬0£©£¬¸ù¾ÝF¡¢G¡¢QµãµÄ×ø±ê¼´¿ÉÓú¬nµÄ´úÊýʽ±íʾ³ö¾ØÐÎFQNGµÄ³¤ºÍ¿í£¬½áºÏ¾ØÐεÄÖܳ¤¹«Ê½¿ÉµÃ³öÖܳ¤C¹ØÓÚnµÄº¯Êý¹ØÏµÊ½£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿É½â¾ö×îÖµÎÊÌ⣮

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=-x2+bx+9-b2£¨bΪ³£Êý£©¾­¹ý×ø±êÔ­µãO£¬
¡à9-b2=0£¬½âµÃ£ºb=-3£¬»òb=3£®
¡ßÅ×ÎïÏߵĶԳÆÖáΪx=-$\frac{b}{2¡Á£¨-1£©}$=$\frac{b}{2}$£¬¶¥µãMÔÚµÚÒ»ÏóÏÞ£¬
¡àb=3£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-x2+3x£®
¡ßµãB£¨1£¬n£©ÔÚÕâÌõÅ×ÎïÏßÉÏ£¬
¡àn=-1+3=2£¬
¡àµãBµÄ×ø±êΪ£¨1£¬2£©£®
£¨2£©ÉèÖ±ÏßOBµÄ½âÎöʽΪy=kx£¬
¡ßµãBµÄ×ø±êΪ£¨1£¬2£©£¬
¡àÓÐ2=k£¬
¼´Ö±ÏßOBµÄ½âÎöʽΪy=2x£®
ÉèµãPµÄ×ø±êΪ£¨m£¬0£©£¬ÔòµãEµÄ×ø±êΪ£¨m£¬2m£©£®
¡ßÈý½ÇÐÎPCDΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àPE=EC=2m£¬
¡àµãCµÄ×ø±êΪ£¨3m£¬2m£©£®
¡ßµãCÔÚÅ×ÎïÏßy=-x2+3xÉÏ£¬
¡àÓÐ2m=-9m2+9m£¬
½âµÃ£ºm=0£¨ÉáÈ¥£©£¬»òm=$\frac{7}{9}$£®
¼´µãPµÄ×ø±êΪ£¨$\frac{7}{9}$£¬0£©£¬
¹ÊOPµÄ³¤¶ÈΪ$\frac{7}{9}$£®
£¨3£©Å×ÎïÏßy=-x2+3xµÄ¶Ô³ÆÖáΪx=-$\frac{3}{2¡Á£¨-1£©}$=$\frac{3}{2}$£®
ÉèµãFµÄ×ø±êΪ£¨n£¬-n2+3n£©£¨0£¼n£¼$\frac{3}{2}$£©£¬ÔòGµã×ø±êΪ£¨3-n£¬-n2+3n£©£¬QµãµÄ×ø±êΪ£¨n£¬0£©£®
¡àFQ=-n2+3n£¬FG=3-n-n£¬
¾ØÐÎFQNGµÄÖܳ¤C=2£¨FQ+FG£©=2£¨-n2+3n+3-2n£©=-2n2+2n+6=-2$£¨n-\frac{1}{2}£©^{2}$+$\frac{13}{2}$£®
¡àµ±n=$\frac{1}{2}$ʱ£¬¾ØÐÎFQNGµÄÖܳ¤È¡×î´óÖµ$\frac{13}{2}$£¬´ËʱµãFµÄ×ø±êΪ£¨$\frac{1}{2}$£¬$\frac{5}{4}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÓ¦Óᢴý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°¾ØÐεÄÖܳ¤¹«Ê½£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©Çó³öbµÄÖµ£»£¨2£©Óú¬mµÄ´úÊýʽ±íʾ³öµãCµÄ×ø±ê£»£¨3£©ÕÒ³öÖܳ¤C¹ØÓÚnµÄº¯Êý¹ØÏµÊ½£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬Éè³öµãµÄ×ø±ê£¬ÓÉÊýÁ¿¹ØÏµÕÒ³ö¹ØÓÚµãµÄ×ø±êÖеÄδ֪ÊýµÄ·½³Ì£¬½â·½³ÌÀ´È·¶¨µãµÄ×ø±êÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬ÏÈ»­Ò»¸ö±ß³¤Îª1µÄÕý·½ÐΣ¬ÒÔÆä¶Ô½ÇÏßΪ±ß»­µÚ¶þ¸öÕý·½ÐΣ¬ÔÙÒÔµÚ¶þ¸öÕý·½ÐεĶԽÇÏßΪ±ß»­µÚÈý¸öÕý·½ÐΣ¬¡­£¬Èç´Ë·´¸´ÏÂÈ¥£¬ÄÇôµÚn¸öÕý·½ÐεĶԽÇÏß³¤Îª£¨$\sqrt{2}$£©n£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©¼ÆË㣺$£¨\sqrt{2}-1£©^{2}+\sqrt{8}-|-1|$                  
£¨2£©½â·½³Ì£ºx2-5x+6=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÏÂÁи÷ÊýÖÐ0£¬$\frac{25}{4}$£¬a2+1£¬-£¨-$\frac{1}{3}$£©2£¬-£¨-5£©2£¬x2+2x+2£¬|a-1|£¬|a|-1£¬$\sqrt{16}$£¬ÓÐÆ½·½¸ùµÄ¸öÊýÊÇ6¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®½â²»µÈʽ×é$\left\{\begin{array}{l}{2-x¡Ü0}\\{3£¨5x+1£©£¾4x-8}\end{array}\right.$µÄ½â¼¯Îªx¡Ý2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈôÒ»¸ö½ÇµÄ¶ÈÊýΪ35¡ã32¡ä£¬ÔòËüµÄ²¹½ÇµÄ¶ÈÊýΪ144¡ã28¡ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª?ABCDÖУ¬AB=7£¬¡ÏADCÓë¡ÏBCDµÄƽ·ÖÏ߷ֱ𽻱ßABÓÚµãF¡¢E£¬ÈôEF=1£¬ÔòBCµÄ³¤Îª4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª·½³Ì×é$\left\{\begin{array}{l}{3x+y=1+3a}\\{x+3y=1-a}\end{array}\right.$µÄ½âÂú×ãx+y=2£¬ÔòaµÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬¡ÏACB=90¡ã£¬BC=AC£¬AD¡ÍCE£¬BE¡ÍCE£¬´¹×ã·Ö±ðΪD¡¢E£¬AD=2.5cm£¬BE=0.8cm£®ÇóDEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸