【题目】如图, 是⊙ 的直径, 是⊙ 的弦,过点 的切线交 的延长线于点 ,且 .
(1)求 的度数;
(2)若 =3,求图中阴影部分的面积.
【答案】
(1)解:连接OC,
∵过点C的切线交AB的延长线于点D,
∴OC⊥CD,
∴∠OCD=90°,即∠D+∠COD=90°,
∵AO=CO,
∴∠A=∠ACO,
∴∠COD=2∠A,
∵∠A=∠D,
∴∠COD=2∠D,
∴3∠D=90°,
∴∠D=30°,
∴∠ACD=180°-∠A-∠D=180°-30°-30°=120°
(2)解:由(1)可知∠COD=60°在Rt△COD中,∵CD=3,∴OC=3× ,∴阴影部分的面积=
【解析】(1)根据切线的性质和已知∠A=∠D,得到∠COD=2∠D,根据三角形内角和定理,求出∠ACD的度数;(2)由(1)可知∠COD=60°,求出阴影部分的面积等于三角形COD的面积-扇形COB的面积.
【考点精析】利用切线的性质定理对题目进行判断即可得到答案,需要熟知切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
科目:初中数学 来源: 题型:
【题目】如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,E点是BC的中点,F是AB延长线上一点且FB=1.
(1)求经过点O,A,E三点的抛物线解析式;
(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;
(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 和△关于直线 PQ 对称,△和△关于直线 MN对称.
(1)用无刻度直尺画出直线MN;
(2)直线 MN 和 PQ 相交于点 O,试探究∠AOA2 与直线 MN,PQ 所夹锐角α的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2-6ax+4a+3的图像与y轴交于点A,点B是x轴上一点,其坐标为(1,0),连接AB,tan∠ABO=2.
(1)则点A的坐标为 , a=;
(2)过点A作AB的垂线与该二次函数的图像交于另一点C,求点C的坐标;
(3)连接BC,过点A作直线l交线段BC于点P,设点B、点C到l的距离分别为d1、d2 , 求d1+d2的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为 .
(1)则今年南瓜的种植面积为亩;(用含 的代数式表示)
(2)如果今年南瓜亩产量的增长率是种植面积的增长率的 ,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.
(1)求证:∠ABE+∠C﹣∠E=180°.
(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.
(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+6交x轴于A,交y轴于B.
(1)直接写出A( , ),B( , );
(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标
(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a,b,c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0.
(1)求a,b,c的值;
(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与三角形ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市创全国卫生城市,某街道积极响应,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,若购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍.
求温馨提示牌和垃圾箱的单价各是多少元?
如果该街道需购买温馨提示牌和垃圾箱共3000个.
求购买温馨提示牌和垃圾箱所需费用元与温馨提示牌的个数x的函数关系式;
若该街道计划费用不超过35万元,而且垃圾箱的个数不少于温馨提示牌的个数的倍,求有几种可供选择的方案?并找出资金最少的方案,求出最少需多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com