【题目】如图,四边形ABCD是一个矩形,BC=10cm,AB=8cm。现沿AE折叠,使点D恰好落在BC边上的点F处,求:(1)BF的长;(2)CE的长.
科目:初中数学 来源: 题型:
【题目】如图所示,三角形(记作)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是,,,先将向上平移3个单位长度,再向右平移2个单位长度,得到.
(1)在图中画出;
(2)点,,的坐标分别为______、________、_________;
(3)若有一点,使与面积相等,求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).
(1)求二次函数的表达式;
(2)设上述抛物线的对称轴l与x轴交于点D,过点C作CE⊥l于E,P为线段DE上一点,Q(m,0)为x轴负半轴上一点,以P、Q、D为顶点的三角形与△CPE相似;
①当满足条件的点有且只有三个时,求的取值范围;
②若满足条件的点有且只有两个,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】科技人员研制出采摘水果的单人便携式采摘机,已知雇一个工手工采摘每小时可采摘水果10公斤,一个雇工操作该采摘机每小时可摘水果35公斤,雇工每天工作8小时.
(1)一个雇工手工采摘水果,一天能采摘_______公斤.
(2)张家和王家均雇人采摘水果,王家雇的人数是张家的2倍,张家的人手工采摘,王家所雇的人中的用采摘机采摘,用手工采摘.已知手工采摘1公斤水果的费用是1.5元,设张家雇佣人.
①用含的代数式表示:
王家雇佣的人数:_________人;王家雇佣的人中用采摘机采摘人数:__________人.
②张家付给雇工一天的工资总额为1440元,求的值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是( )
A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′D′的顶点A′与点O重合,A′B′交BC于点E,A′D′交CD于点F.
(1)求证:OE=OF;
(2)若正方形ABCD的边长为1,求两个正方形重叠部分的面积;
(3)若正方形 A′B′C′D′绕着O点旋转,EF的长度何时最小,并求出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”.
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX= °;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中是不可能事件的是( )
A. 任意画一个四边形,它的内角和是
B. 若,则
C. 一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”
D. 掷一枚质地均匀的硬币,落地时正面朝上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.
(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;
(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com