【题目】如图,∠BAE +∠AED=180°,∠1=∠2,那么∠M=∠N.下面是推理过程,请你完成.
解:∵∠BAE+∠AED=180°(已知)
∴AB∥DE(______).
∴∠BAE=∠AEF(______).
又∵∠1=∠2(已知)
∴ ∠BAE∠1=∠AEF_____(等式性质),即 ∠MAE = ∠NEA .
∴_______∥______(______).
∴∠M=∠N(两直线平行,内错角相等).
科目:初中数学 来源: 题型:
【题目】已知有理数a、b、c在数轴上对应点的位置如图所示.解答下列各题:
(1)判断下列各式的符号(填“>”或“<”)
a﹣b 0,b﹣c 0,c﹣a 0,b+c 0
(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的∠BAD=∠C=90,AB=AD,AE⊥BC于E,旋转后能与重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)若AE=5㎝,求四边形AECF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AM∥BN,BC是∠ABN的平分线.
(1)过点A作AD⊥BC,垂足为O,AD与BN交于点D. (要求:用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)
(2)求证:AC=BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:
①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是( )
A. ①③④ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象,
(1)参照图②,求a、b及图②中的c值;
(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.
(3)当点P出发多少秒后,△APD的面积是矩形ABCD面积的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,ABCD中,E、F分别是边AB、CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB= ,AC=5,tanA=2,D是BC中点,点P是AC上一个动点,将△BPD沿PD折叠,折叠后的三角形与△PBC的重合部分面积恰好等于△BPD面积的一半,则AP的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:
周次 组别 | 一 | 二 | 三 | 四 | 五 | 六 |
甲组 | 12 | 15 | 16 | 14 | 14 | 13 |
乙组 | 9 | 14 | 10 | 17 | 16 | 18 |
(1)请根据上表中的数据完成下表.(注:方差的计算结果精确到0.1)
平均数 | 中位数 | 方差 | |
甲组 | |||
乙组 |
(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图.
(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况进行简要评价.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com