【题目】已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.
(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;
(2)如图2,点E为BC延长长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;
(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.
【答案】(1)BE=8﹣2;(2)证明见解析;(3) +5+3.
【解析】
(1)先求出DE=AD=4,最后用勾股定理即可得出结论;
(2)先判断出∠BMD=90°,再判断出△ADM≌△BCM得出∠AMD=∠BMC,即可得出结论;
(3)由于BM和PQ是定值,只要BP+QM最小,利用对称确定出MG'就是BP+QM的最小值,最后利用勾股定理即可得出结论.
解:(1)如图1中,∵四边形ABCD是矩形,
∴∠C=90°,CD=AB=6,AD=BC=8,
∴DE=AD=8,
在Rt△CDE中,CE=,
∴BE=BC﹣CE=8﹣2;
(2)如图2,连接BM,
∵点M是DE的中点,
∴DM=EM,
∵BD=BE,
∴BM⊥DE,
∴∠BMD=90°,
∵点M是Rt△CDE的斜边的中点,
∴DM=CM,
∴∠CDM=∠DCM,
∴∠ADM=∠BCM
在△ADM和△BCM中,
,
∴△ADM≌△BCM(SAS),
∴∠AMD=∠BMC,
∴∠AMC=∠AMB+∠BMC=∠AMB+∠AMD=∠BMD=90°,
∴AM⊥CM;
(3)如图3中,过点Q作QG∥BP交BC于G,作点G关于AD的对称点G',连接QG',当点G',Q,M在同一条线上时,QM+BP最小,而PQ和BM是定值,
∴此时,四边形PBMQ周长最小,
∵QG∥PB,PQ∥BG,
∴四边形BPQG是平行四边形,
∴QG=BP,BG=PQ=5,
∴CG=3,如图2,在Rt△BCD中,CD=6,BC=8,
∴BD=10,
∴BE=10,
∴BG=BE﹣BG=5,CE=BE﹣BC=2,
∴HM=1+3=4,HG=CD=3,
在Rt△MHG'中,HG'=6+3=9,HM=4,
∴MG'=,
在Rt△CDE中,DE=,
∴ME=,
在Rt△BME中,BM= =3,
∴四边形PBMQ周长最小值为BP+PQ+MQ+BM=QG+PQ+QM+BM=MG'+PQ+PM= +5+3,
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形的一边在轴的正半轴上,点的坐标为, ,动点从原点出发,在线段上以每秒2个单位的速度向点匀速运动,动点从原点出发,沿轴的正半轴以每秒1个单位的速度向上匀速运动,过点作轴的平行线分别交于,设动点,同时出发,当点到达点时,点也停止运动,他们运动的时间为秒 .
(1)点的坐标为_____,的坐标为____;
(2)当为何值时,四边形为平行四边形;
(3)是否存在某一时刻,使为直角三角形?若存在,请求出此时的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若BC=6,AD=4,求sinA的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.
(1)求证:△ADB≌△CDE;
(2)求∠MDN的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A. 打开电视机,正在播广告,是必然事件
B. 在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定
C. 某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%
D. 从一个只装有白球的缸里摸出一个球,摸出的球是白球
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|2a﹣b+8|+(a+b﹣2)2=0.
(1)求a、b的值;
(2)如图1,点G在y轴上,三角形COG的面积是三角形ABC的面积的,求出点G的坐标;
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一个动点,连接OP、AC、DB,OE平分∠AOP,OF⊥CE,若∠OPD+k∠DOF=k(∠FOP+∠AOE),现将四边形ABDC向下平移k个单位得到四边形A1B1D1C1,已知AM+BN =k,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一商场有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑,某中学准备从甲、乙两种品牌的电脑中各选购一种型号的电脑安装到各班教室.
(1)写出所有选购方案(利用树状图或列表法表示);
(2)若(1)中各种选购方案被选中的可能性相同,那么A型号被选中的概率是多少?
(3)已知该中学用18万元人民币购买甲、乙两种品牌电脑刚好32台(价格如下表所示,单位:万元),其中甲品牌电脑选为A型号,求该中学购买到A型号电脑多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com