【题目】如图,△ABC是等边三角形,AB=3,点E在AC上,AEAC,D是BC延长线上一点,将线段DE绕点E逆时针旋转90°得到线段FE,当AF∥BD时,线段AF的长为____.
【答案】1.
【解析】
过点E作EM⊥AF于M,交BD于N,根据30°直角三角形的性质求出AM =1,再根据∠60°的三角函数值求出EN的长,再依据△EMF≌△DNE(AAS)得出MF=EN,据此可得,当AF∥BD时,线段AF的长为1.
如图过点E作EM⊥AF于M,交BD于N.
∵△ABC是等边三角形,
∴AB=BC=AC=3,∠ACB=60°.
∵AEAC,
∴AE=2,EC=1.
∵AF∥BD,
∴∠EAM=∠ACB=60°.
∵EM⊥AF,
∴∠AME=90°,
∴∠AEM=30°,
∴AMAE=1.
∵AF∥BD,EM⊥AF,
∴EN⊥BC,
∴EN=ECsin60°,
∵∠EMF=∠END=∠FED=90°,
∴∠MEF+∠MFE=90°,∠MEF+∠DEN=90°,
∴∠EFM=∠DEN.
∵ED=EF,
∴△EMF≌△DNE(AAS),
∴MF=EN,
∴AF=AM+MF=1.
故答案为:1.
科目:初中数学 来源: 题型:
【题目】如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.
(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH;
(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=MN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C
(1)求抛物线的解析式;
(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.
①当t为何值时,矩形PQNM的面积最小?并求出最小面积;
②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AB上一点,将△ADE沿DE翻折,点A恰好落在BC上,记为A1,折痕为DE.再将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1.若AD=1,则AB的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.动点P从点A出发,沿AB以每秒5个单位长度的速度向终点B运动.当点P不与点A重合时,过点P作PD⊥AC于点D、PE∥AC,过点D作DE∥AB,DE与PE交于点E.设点P的运动时间为t秒.
(1)线段AD的长为 .(用含t的代数式表示).
(2)当点E落在BC边上时,求t的值.
(3)设△DPE与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.
(4)若线段PE的中点为Q,当点Q落在△ABC一边垂直平分线上时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC是直角三角形,∠ABC=90°,∠CAB=60°,点O(0,0),点A(1,0),点B(﹣1,0),点C在第二象限,点P(﹣2,).
(I)如图①,求C点坐标及∠PCB的大小;
(II)将△ABC绕C点逆时针旋转得到△MNC,点A,B的对应点分别为点M,N,S为△PMN的面积.
①如图②,当点N落在边CA上时,求S的值;
②求S的取值范围(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB、FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=,BE=1,求半圆的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组对函数的图象和性质进行了研究,探究过程如下.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下.
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 8 | m | 0 | 2 | n | 2 | 0 | 8 | … |
其中,m= ,n= ;
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请补全函数图象的剩余部分;
(3)进一步探究函数图象发现:
①函数图象与x轴有_____________个交点;
②方程有_____________个实数根;
③当关于x的方程有3个实数根时,p的值是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用.小东骑自行车以的速度直接回家,两人离家的路程与各自离开出发 地的时间之间的函数图象如图所示.
家与图书馆之间的路程为多少,小玲步行的速度为多少;
求小东离家的路程关于的函数解析式,并写出自变量的取值范围;
求两人相遇时离家多远?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com