【题目】小明在学习了如何证明“三边成比例的两个三角形相似”后,运用类似的思路证明了“两角分别相等的两个三角形相似”,以下是具体过程.
已知:如图,在△ABC和△中,∠A=∠,∠B=∠.
求证:△ABC∽△.
证明:在线段上截取,过点D作DE∥,交于点E.
由此得到△∽△.
∴∠=∠,
∵∠B=∠,
∴∠=∠B,
∵∠=∠A,
∴△≌△ABC,
∴△ABC∽△.
小明将证明的基本思路概括如下,请补充完整:
(1)首先,通过作平行线,依据__________,可以判定所作△与_________;
(2)然后,再依据相似三角形的对应角相等和已知条件可以证明所作△与________;
(3)最后,可证得△ABC∽△.
科目:初中数学 来源: 题型:
【题目】某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:
(1)本次抽查的样本容量是 ;
(2)在扇形统计图中,“主动质疑”对应的圆心角为 度;
(3)将条形统计图补充完整;
(4)如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象经过点P(2,﹣3).
(1)求该函数的解析式;
(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(-6,0),D(-7,3),点B、C在第二象限内.
(1)点B的坐标 ;
(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P、Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)若△A1B1C1与△ABC关于y轴成轴对称,写出△A1B1C1三个顶点坐标:A1= ;B1= ;C1= ;
(2)画出△A1B1C1,并求△A1B1C1面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90,AC=BC,AD平分∠CAB,DE⊥AB,垂足为E.
(1)求证:CD=BE;
(2)若AB=10,求BD的长度。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E,F,连结CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是_____________________(不添加辅助线).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年来网约车十分流行,初三某班学生对“美团”和“滴滴”两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:
根据以上信息,整理分析数据如下:
平均月收入/千元 | 中位数/千元 | 众数/千元 | 方差/千元2 | |
“美团” | ① | 6 | 6 | 1.2 |
“滴滴” | 6 | ② | 4 | ③ |
(1)完成表格填空;
(2)若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com