【题目】一元二次方程x2﹣4x+4=0的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.无实数根
D.无法确定
科目:初中数学 来源: 题型:
【题目】如图,小明做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )
A. SAS B. ASA C. AAS D. SSS
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查发现,截至2016年底某市汽车拥有量为16.9万辆,已知2014年底该市汽车拥有量为10万辆,设2014年底至2016年底该市汽车拥有量的年平均增长率为x,根据题意可列方程得( )
A.10(1﹣x)2=16.9
B.10(1+2x)=16.9
C.10(1+x)2=16.9
D.16.9(1+x)2=10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将下列各数填在相应的大括号里:
1, —5, , —4.2, 0, , 10,—,
整数:{ … }
非负整数:{ … }
分数:{ … }
负分数:{ … }
有理数:{ … }
非负有理数:{ … }
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中:
(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明PA=PM,只需证△APM是等边三角形;
想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;
想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…
请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用代数式表示.
(1)“x的5倍与y的和的一半”可以表示为_____.
(2)南平乡有水稻田m亩,计划每亩施肥a千克;有玉米田n亩,计划每亩施肥b千克,共施肥_____千克.
(3)有三个连续的整数,最小数是m,则其他两个数分别是_____和_____.
(4)全班总人数为y,其中男生占56%,那么女生人数是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com