精英家教网 > 初中数学 > 题目详情

【题目】如图,将面积为的矩形ABCD的四边BACBDCAD分别延长至EFGH,使得AE=CGBF=BC DH=AD,连接EF FGGHHEAFCH.若四边形EFGH为菱形,,则菱形EFGH的面积是( )

A. B.

C. D.

【答案】B

【解析】

FB=2aAB=3a,由RtEBFRtGDHHL),推出FB=DH,即得到BF=DH=AD=BC=2a,设AE=CG=x,由FG=GH,可得16a2+x2=x+3a2+4a2,解得x=,用a表示菱形的面积即可解决问题.

解:∵FBAB=23

∴可以假设FB=2aAB=3a

∵四边形ABCD是矩形,

AD=BCAB=CD

AE=CG

BE=GD

∵∠EBF=GDH=90°,EF=GHEB=GD

RtEBFRtGDHHL),

FB=DH

AD=DH

BF=DH=AD=BC=2a,设AE=CG=x

FG=GH

16a2+x2=x+3a2+4a2

解得x=

∴S菱形EFGH=2××2a×3a++6a2+2××4a×=15a2

S=6a2

a2=

∴菱形EFGH的面积=S

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,己知正方形ABCD的边长为4, P是对角线BD上一点,PE⊥BC于点E, PF⊥CD于点F,连接AP, EF.给出下列结论:①PD=EC:②四边形PECF的周长为8;③△APD一定是等腰三角形:④AP=EF⑤EF的最小值为⑥AP⊥EF.其中正确结论的序号为(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理,如图所示的长方形由两个这样的图形拼成,若,则该长方形的面积为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在RtABC中,∠A=90°,AB=AC,点DE分别在边ABAC上,AD=AE,连接DC,点MPN分别为DEDCBC的中点.

(1)观察猜想

1中,线段PMPN的数量关系是 ,位置关系是

(2)探究证明

ADE绕点A逆时针方向旋转到图2的位置,连接MNBDCE,判断PMN的形状,并说明理由;

(3)拓展延伸

ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出PMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程或方程组解应用题:

某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校的一个社会实践小组对本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:

等级

非常了解

比较了解

基本了解

不太了解

频数

20

35

41

4

1)请根据调查结果,若该校有学生人,请估计这些学生中“比较了解”垃圾分类知识的人数.

2)在“比较了解”的调查结果里,其中九(1)班学生共有人,其中名男生和名女生,在这人中,打算随机选出位进行采访,求出所选两位同学恰好是1名男生和1名女生的概率.(要求列表或画树状图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点F从菱形ABCD的顶点A出发,沿A→D→B1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为(  )

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数至少为( )

A. 5 B. 6

C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.

月信息消费额分组统计表

组别

消费额(元)

A

10x100

B

100x200

C

20x300

D

300x400

E

x400

请结合图表中相关数据解答下列问题:

(1)这次接受调查的有 户;

(2)在扇形统计图中,“E”所对应的圆心角的度数是

(3)请你补全频数直方图;

(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?

查看答案和解析>>

同步练习册答案