精英家教网 > 初中数学 > 题目详情

【题目】从边长为a的正方形中剪掉一个边长为b的正方形(如图),然后将剩余部分拼成一个长方形(如图).

1)上述操作能验证的等式是   ;(请选择正确的一个)

Aa22abb2=(ab)2 Ba2b2=(ab)(abCa2aba(ab)

2)应用你从(1)选出的等式,完成下列各题:

①已知x24y212x2y4,求x2y的值.

②计算:(1)(1)(1)…(1)(1).

【答案】(1) B ;(2) 3 .

【解析】

1)观察图1与图2,根据两图形阴影部分面积相等,验证平方差公式即可;
2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②先利用平方差公式变形,再约分即可得到结果.

解:(1)根据图形得:a2-b2=a+b)(a-b),
上述操作能验证的等式是B
故答案为:B

2)①∵x2-4y2=x+2y)(x-2y=12x+2y=4
x-2y=12÷4=3

②(1)(1)(11)(1

=1)(1+)(1)(1+1)(1+)(1)(1+

=××××××…××××

=×

=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线经过点

1求直线的解析式

2若直线与直线相交于点求点的坐标

3根据图象直接写出关于的不等式的解集

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1 , 旋转角为θ(0°<θ<90°),连接AC1、BD1 , AC1与BD1交于点P.

(1)如图1,若四边形ABCD是正方形.请直接写出AC1 与BD1的数量关系和位置关系.
(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,判断AC1与BD1的数量关系和位置关系,并给出证明;
(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1 , 设AC1=kBD1 , 请直接写出k的值和AC12+(kDD12的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计.根据空气污染指数的不同,将空气质量分为ABCDE五个等级,分别表示空气质量优、良、轻度污染、中度污染、重度污染,并绘制了如下两幅不完整的统计图.根据图中的信息,解答下列问题:

1)求被抽取的天数;

2)补全条形统计图,并求扇形统计图中表示空气质量为中度污染的扇形的圆心角度数;

3)在这次抽取的天数中,求空气质量为良占的百分比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列关于分式的判断,正确的是( )
A.当x=2时, 的值为零
B.无论x为何值, 的值总为正数
C.无论x为何值, 不可能得整数值
D.当x≠3时, 有意义

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,连接AB

1)如图,已知ACBC分别是∠BAP和∠ABM角的平分线,

①点AB在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.

②如图,将△ABC沿直线AB折叠,若点C落在直线PQ上,记作点C′,则∠ABO   °;如图,将△ABC沿直线AB折叠,若点C落在直线MN上,记作点C′′,则∠ABO   °

2)如图,延长BAG,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于EF,在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC,ACB=90°,B=30°,AD为∠CAB的角平分线,CD=3,则DB=____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC是等边三角形,点DBC上一点,点ECA的延长线上,连结EBED,且EB=ED.

(1)求证:DEC=ABE

(2)D关于直线EC的对称点为M,连接EMBM

①依题意将图2补全;

②求证:EB=BM.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.

(1)若∠BEB′=110°,则∠BEC=°,∠AEN=°,∠BEC+∠AEN°.
(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.
(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.

查看答案和解析>>

同步练习册答案