精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.

(1)求证:PB是的切线;
(2)若PB=6,DB=8,求⊙O的半径

【答案】
(1)

证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,

∴∠OBP=∠E=90°,

∵OB为圆的半径,

∴PB为圆O的切线.


(2)

解:在Rt△PBD中,PB=6,DB=8,

根据勾股定理得:PD==10,

∵PD与PB都为圆的切线,

∴PC=PB=6,

∴DC=PD﹣PC=10﹣6=4,

在Rt△CDO中,设OC=r,则有DO=8﹣r,

根据勾股定理得:(8﹣r)2=r2+42

解得:r=3,

则圆的半径为3.


【解析】(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证;
(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数f(x)= ,关于x的不等式f2(x)+af(x)>0只有两个整数解,则实数a的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)如果AB=4,AE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算结果正确的是(  )
A.2a3+a3=3a6
B.(﹣a)2?a3=﹣a6
C.(﹣?)﹣2=4
D.(﹣2)0=﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某养殖场计划购买甲、乙两种鱼苗共700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元,相关资料表明:甲、乙两种鱼苗的成活率分别为85%和90%
(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?
(2)若要使这批鱼苗的总成活率不低于88%,则甲种鱼苗至多购买多少尾?
(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是(  )

A.43
B.45
C.51
D.53

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.

(1)当E为BC中点时,求证:△BCF≌△DEC;
(2)当BE=2EC时,求 的值;
(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是 ,求n的值.

查看答案和解析>>

同步练习册答案