【题目】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.
(1)求证:PB是的切线;
(2)若PB=6,DB=8,求⊙O的半径
【答案】
(1)
证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,
∴∠OBP=∠E=90°,
∵OB为圆的半径,
∴PB为圆O的切线.
(2)
解:在Rt△PBD中,PB=6,DB=8,
根据勾股定理得:PD==10,
∵PD与PB都为圆的切线,
∴PC=PB=6,
∴DC=PD﹣PC=10﹣6=4,
在Rt△CDO中,设OC=r,则有DO=8﹣r,
根据勾股定理得:(8﹣r)2=r2+42,
解得:r=3,
则圆的半径为3.
【解析】(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证;
(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)如果AB=4,AE=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某养殖场计划购买甲、乙两种鱼苗共700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元,相关资料表明:甲、乙两种鱼苗的成活率分别为85%和90%
(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?
(2)若要使这批鱼苗的总成活率不低于88%,则甲种鱼苗至多购买多少尾?
(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )
A.43
B.45
C.51
D.53
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.
(1)当E为BC中点时,求证:△BCF≌△DEC;
(2)当BE=2EC时,求 的值;
(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是 ,求n的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com